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Abstract: Up to 20% of pregnant women ages 18–24 consume cannabis during pregnancy. Moreover,
clinical studies indicate that cannabis consumption during pregnancy leads to fetal growth restriction
(FGR), which is associated with an increased risk of obesity, type II diabetes (T2D), and cardiovascular
disease in the offspring. This is of great concern considering that the concentration of ∆9- tetrahydro-
cannabinol (∆9-THC), a major psychoactive component of cannabis, has doubled over the last decade
and can readily cross the placenta and enter fetal circulation, with the potential to negatively impact
fetal development via the endocannabinoid (eCB) system. Cannabis exposure in utero could also lead
to FGR via placental insufficiency. In this review, we aim to examine current pre-clinical and clinical
findings on the direct effects of exposure to cannabis and its constituents on fetal development as
well as indirect effects, namely placental insufficiency, on postnatal metabolic diseases.

Keywords: ∆9-tetrahydrocannabinol; cannabidiol; intrauterine growth restriction; placental insuffi-
ciency; liver; heart; pancreas; glucose intolerance; dyslipidemia

1. Introduction

The worldwide use of cannabis has increased over the past decades [1], and among
pregnant women, the usage can be as high as 20% between the ages of 18–24 [2]. Moreover,
in a separate study, it has been demonstrated that up to 35% of individuals had consumed
cannabis at the time of a confirmed pregnancy [3]. Reports indicate that this is attributed
to self-medication given the perception that cannabis is safe and can alleviate common
pregnancy ailments including nausea, anxiety, and depression [4–6]. For example, in
Colorado, ~70% of dispensaries recommended the use of cannabis to treat nausea associated
with pregnancy [7]. A recent study has further shown that although the majority of mothers
understood that the constituents of cannabis are transmitted to the fetus, some still decided
to use it, which suggests that there is a misunderstanding regarding its safety in fetal life [8].
These misconceptions surrounding maternal cannabis usage warrant a closer look at the
potential harms they could exert on the short- and long-term health of the baby.

Several clinical studies have linked prenatal cannabis exposure to placental abnor-
malities and fetal growth restriction [9–12]. However, while clinical studies link maternal
cannabis use and low-birth-weight outcomes [9–11], many do not control for socioeco-
nomic status and polydrug use. In addition, for ethical reasons, there are no randomized
control trials that study the effects of maternal cannabis consumption on neonatal outcomes.
Therefore, the safety of cannabis and its constituents needs to be addressed explicitly in
animal models given the confounding issues of clinical studies. These constituents include
∆9-THC (the major psychoactive cannabinoid in cannabis) and cannabidiol (CBD, the
largest non-intoxicating component of cannabis). To date, clinical studies indicate that
prenatal exposure to cannabis can lead to FGR and neurological deficits [9–14]. In humans,
intrauterine growth restriction (IUGR) often results due to placental insufficiency and is
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defined as the inability for the fetus to reach its full genetic growth potential [15,16]. It is
well-known that these fetal growth deficits increase the risk of metabolic syndrome and car-
diovascular disease in the offspring later in life [17–21]. IUGR can be followed by a period
of accelerated growth, coined postnatal “catch-up growth”, which exacerbates the adverse
metabolic consequences long-term [22]. These emerging links between ∆9-THC and FGR
are of great concern considering that ∆9-THC has increased from 8.9% in 2008 to 17.1%
in 2017 [23]. Moreover, ∆9-THC can readily cross the placental barrier and concentrate
in fetal tissue [24,25]. Collectively, this suggests that maternal ∆9-THC exposure leading
to FGR (∆9-THC-induced FGR) could result in long-term dysmetabolism in the offspring.
However, further research is warranted. Moreover, the effects of prenatal CBD exposure
(in either the absence or presence of ∆9-THC) on maternal–fetal outcomes and postnatal
health remain understudied despite CBD’s growing popularity and its perception as a
“good” cannabinoid. Reports indicate that up to 62% of individuals use CBD to treat pain,
anxiety, and depression [26], all common symptoms associated with pregnancy.

To appreciate how these constituents of cannabis might influence fetal development,
it is first imperative to understand the endocannabinoid (eCB) system. The eCB system
is composed of two main receptors, cannabinoid receptor type 1 (CB1) and type 2 (CB2),
which are G protein-coupled receptors (GPCR) bound by endogenous eCB lipid ligands
made up of polyunsaturated fatty acids found in the brain and peripheral organs [27]. The
major endogenous agonists of the eCB system are a class of eicosanoid cannabinoids called
2-arachidonylglycerol (2-AG) and anandamide (AEA) [28,29]. Other classes of cannabinoid
agonists include classical tricyclic dibenzopyrans (e.g., ∆9-THC, HU-210), bicyclic and
tricyclic analogs of ∆9-THC (e.g., CP-55,940), and aminoalkylindole cannabinoids (e.g.,
WIN55212). Although CB1 and CB2 receptors recognize cannabinoid agonists with the
same structural groups, they differ by their affinity in some cases [30]. It is thought that
AEA is a high-affinity partial agonist of CB1 with low affinity and activity at CB2, while
2-AG is a moderate-affinity full agonist at CB1 and CB2 [30,31]. CB1 and CB2 generally
interact with heterotrimeric G protein, Gαi/o, which inhibits adenylyl cyclase or couples
with the mitogen-activated protein kinase. Just like other GPCRs, CB1 and CB2 have other
effector proteins (e.g., β -arrestin-1), which likely allow them preferentially select toward a
particular pathway depending on the type of ligand; this is called biased signaling [32].

The eCB system was originally thought to be localized primarily in the central nervous
system (CNS) with its primary role in regulating neurotransmission. It is now well-
established to be also present in peripheral tissues. The eCB system emerges early in
development; not only are CB1 and CB2 expressed in embryonic development, but they
also play a role in implantation and placentation, suggesting that disruption in this system
could lead to adverse outcomes in pregnancy [33,34]. However, to date, the majority of
preclinical and clinical studies focus on examining perinatal cannabinoid exposure on the
neurodevelopmental and behavioral outcomes of the offspring [35–41] while not addressing
the postnatal cardiovascular and metabolic outcomes that might be involved. Notably,
there is evidence that both CB1 and CB2 receptors are found in peripheral fetal/postnatal
tissues (i.e., heart, liver, adipose, pancreas) [34,42–46], which supports the notion that
cannabinoids could directly impact fetal and postnatal development. In addition, there is
a decent body of knowledge regarding the eCB system and its role in metabolic diseases
(as reviewed in [47]). Specifically, the eCB system plays a role in food intake, energy
expenditure, lipid metabolism, insulin sensitivity, and cardiovascular disease [47]. This
could further suggest that developmental abnormalities in the development of the eCB
system itself could lead to metabolic disease later in life. Given what is known to date about
the effects of ∆9-THC, we postulate that cannabinoids can negatively impact placental
function and lead to indirect effects (e.g., placental insufficiency) on the long-term health
on the offspring. In addition to this, we speculate the possibility that major lipophilic
constituents, namely, ∆9-THC and/or CBD, could also have direct effects, by which they
cross the placenta and influence fetal organ development via the endocannabinoid (eCB)
system. Therefore, in this review, we aim to highlight the current knowledge of the effects
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of cannabis and its constituents, on the placenta and postnatal metabolic health of the
offspring, with an emphasis on ∆9-THC.

2. The Impact of Cannabinoids on the Placenta

IUGR is the main adverse outcome of placental insufficiency [15,16]. Since gestational
use of cannabis has been associated with FGR [9–12], it is therefore critical to address
whether the placenta is a root cause of cannabinoid-induced FGR and the subsequent
metabolic deficits in postnatal life.

2.1. The Endocannabinoid System in Placental Development and the Influence of Exogenous Cannabinoids

The two major eCBs, 2-AG and AEA, and the main eCB receptors are found in rodent
placenta [33]. Both fatty acid amide hydrolase (FAAH) and N-acylphosphatidylethanolamine-
specific phospholipase D (NAPE-PLD) are responsible for metabolizing and synthesizing
AEA, respectively, and can be found in both the human and rodent placenta [33]. It is
important to note that data on 2-AG and its role throughout gestation remain elusive. The
eCB system is present in the midgestational rodent placenta, and research suggests that
endocannabinoids, mainly AEA coupled with the activity/expression of its corresponding
receptors and enzymes, play a vital role in decidualization, placentation, and the mainte-
nance of pregnancy [33,48]. With respect to the maternal side, CB1, CB2, NAPE-PLD, and
FAAH are expressed in the decidua of both human and rodents and are thought to also play
a role in decidualization, placental development, and maintenance of pregnancy [49–52].
When endometrial stromal cells decidualize, they naturally increase the transcript abun-
dance of CB1 and CB2 receptors [53], which could make decidualized cells particularly
sensitive to sustained action by eCBs and exogenous cannabinoids (i.e., naturally occur-
ring plant cannabinoids or synthetic cannabinoids), resulting in compromised decidual
function [54]. Near the pinnacle of rodent decidual development, NAPE-PLD increases
along with AEA [55,56]; however, this is followed by an increase in the AEA-degrading
enzyme, FAAH [57], indicating that there are changes in the eCB profile during gestation.
After the peak of decidualization, the eCB system continues to play a major role in pla-
centation. For example, CB1 knockout mice exhibit hampered trophoblast proliferation
and invasion along with spongiotrophoblast development [48], which could ultimately
lead to FGR. In human BeWo cells, increases in AEA impair trophoblast proliferation
and induce apoptosis [58,59], while an increase in 2-AG also leads to apoptosis via the
CB2 receptor [60]. Moreover, aberrant expression of placental NAPE-PLD, CB1, FAAH,
and AEA in the first trimester of pregnancy results in adverse pregnancy outcomes such
as spontaneous miscarriages [61–63]. In vitro, in vivo, and clinical studies implicate that
increased levels of AEA in plasma are associated with pregnancy complications such as
endometriosis and miscarriage; however, the contributions of 2-AG in early pregnancy out-
comes remain understudied [64]. Notably, it is thought that too much or too little of AEA
could both negatively impact placental development [50]. Collectively, it is apparent that a
coordinated balance in the eCB system (e.g., ligands, receptors, and enzymatic profiles) is
necessary for proper embryo implantation and placentation.

It is conceivable that the introduction of exogenous cannabinoids such as ∆9-THC
and/or CBD could influence the homeostasis of the eCB system during the implantation
and development of the placenta. Indeed, in an ex vivo model of the human placenta,
treatment with ∆9-THC altered the eCB system, whereby NAPE-PLD was initially increased
at 24 h and FAAH exhibited an opposite effect [65]. This culminated in an increase in
AEA 72 h post-treatment [65]. It has been previously shown that an increase in AEA
disrupts the fine-tuned balance of apoptosis in cytotrophoblasts and impairs placental
hormone synthesis [59,66]. Furthermore, in vitro models demonstrate that ∆9-THC can also
disrupt trophoblast differentiation, proliferation, and syncitialization [53,67–69]; however,
the body of knowledge with respect to CBD and other cannabinoids is limited. One
study demonstrated that ∆9-THC, CBD, and/or Cannabinol (CBN) (0.5 µM) can suppress
both endometrium stromal cell decidualization and trophoblast invasion, suggesting these
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cannabinoids impair the communication between the endometrial and trophoblast cells [53].
In contrast, a recent study found that only CBD impairs decidualization in vitro [70].
This contradiction could be attributed to the concentration of ∆9-THC (10 µM) in the
latter study and the fact that cannabinoids can have the potential for a dose-dependent
dual response [53]. One proposed mechanism by which CBD impairs decidualization is
through increases in AEA levels, which are implicated to impair decidualization [71]. This
mechanism is further supported by the fact that CBD can prevent degradation of AEA
by inhibiting FAAH in mice [72]. Given this, and the role the eCB system plays in early
gestation, it is apparent that exposure to some exogenous cannabinoids during gestation
has the potential to disrupt the function of the eCB system during implantation and
placentatal development, adversely impacting pregnancy outcomes and fetal development.

2.2. Prenatal Exogenous Cannabinoid Exposure on Placental Insufficiency and Birth Outcomes

Systemic reviews and meta-analyses suggest that maternal cannabis consumption
is associated with poor birth outcomes including, but not limited to, pre-term deliveries,
increased neonatal intensive care unit admission, and low birthweight [9–11,73–75]. How-
ever, many of these studies do not account for the frequency of usage, concentrations of
∆9-THC, and/or CBD and are confounded by socioeconomic status and polydrug use.
Therefore, it is imperative to employ animal models to explicitly address the contribu-
tions of cannabis and its individual constituents (i.e., ∆9-THC and CBD) to maternal–fetal
outcomes while controlling for environmental factors.

In animal models, prenatal studies using doses of around 3 mg/kg of ∆9-THC (i.p.)
result in rodent plasma concentrations (8.6–12.4 ng/mL) similar to those of cannabis users
(13–63 ng/mL), 0–22 h post inhalation from a 7% ∆9-THC content joint [76,77]. A similar
concentration range was also reported in aborted human fetal tissue and placentae from
cannabis users [78]. For CBD, established methods using meconium and umbilical cord
samples from newborns for the detection of in utero cannabinoid exposure demonstrated
that the range of CBD varies from 10–335 ng/mL [79]. In pregnant mice, 10 mg/kg (via
tail vein injection) results in peak maternal serum concentrations of 2615.3 ± 442.3 ng/mL
and peak fetal tissue concentrations of 598.7 ± 251.9 ng/g of fetus (whole body measure-
ment) [80].

Recent studies using 3 to 5 mg/kg ∆9-THC (i.p.) during gestation have reported
placental abnormalities and fetal growth deficits [67,81]. However, the study by Chang
et al. demonstrated that exposure to 5 mg/kg ∆9-THC (i.p.) in mice led to fetal demise
and decreases in litter size [67]. This was attributed with lower expression of placental CB1
and CB2 [67], which could suggest disrupted endocannabinoid signaling in the placenta. A
follow-up study also found impaired placental angiogenesis in 5 mg/kg ∆9-THC-exposed
mice, and it also reported that placentae from women who smoked cannabis (no alcohol or
tobacco) during pregnancy had decreased blood vessel formation (low-CD31-integrated
optical density) with narrowed placental blood vessels [82]. Interestingly, in the same
study, ∆9-THC in vitro reduced cell migration in human umbilical vein endothelial cells
(HUVEC), which was partially reversed by CB1 and CB2 antagonists [82]. However, it is
important to note that this 5 mg/kg dose of ∆9-THC led to fetal demise, which in itself
could be a confounding variable in the interpretation FGR outcomes (e.g., litter size effect).
In addition, this higher dose of ∆9-THC could also confound birth outcomes by influencing
maternal behavior and physical measures (i.e., maternal weight gain), but these parameters
were not assessed [83].

Clinical studies further support the notion that cannabis impairs fetal–maternal blood
flow, as demonstrated in studies that found increased placental vascular resistance in
mothers who consumed cannabis in pregnancy [84]. Recently, our laboratory group demon-
strated that daily exposure to 3 mg/kg ∆9-THC (i.p.) in rats resulted in placental in-
sufficiency (e.g., larger placenta) and symmetrical FGR [81]. The placental insufficiency
was mediated by a lower fetal to placental weight ratio, diminished differentiated tro-
phoblasts (e.g., lower epithelial cell adhesion molecule (EPCAM) in the labyrinth zone),
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decreased fetal blood space, and reduced labyrinth-specific expression in glucocorticoid
receptor (GR) and glucose transporter 1 (Glut1) [81]. A larger placenta and a decreased
fetal:placental weight ratio has also been reported in mice that inhaled 200 mg of cannabis
smoke [85]. However, unlike previous studies, our lower dose of ∆9-THC did not impact
litter size/fetal demise, maternal food intake, or maternal weight gain. These maternal
outcomes are also supported by another group using a similar dose of ∆9-THC [83]. The
increase in placental weight leading to placental insufficiency compliments human studies
whereby cannabis use in pregnancy was associated with a larger placenta [12,86]. In hu-
man placental BeWo cells, it was further demonstrated that ∆9-THC, and not the inactive
metabolite (e.g., carboxylate ∆9-THC), directly impairs placental GR and Glut1 [81].

With respect to CBD, the data available on placental physiology are extremely limited.
However, similar to the previous report described earlier with ∆9-THC [82], it has been
demonstrated that CBD impairs migration, invasion, and sprouting in HUVEC cells lines
and angiogenesis in mice [87]. Feinshtein et al. further presents an interesting perspec-
tive on the impact of CBD on the placenta that broadens the potential indirect effects of
cannabinoid exposure [88]. This ex vivo study found that high doses of CBD can inhibit
breast-cancer-resistant protein (BCRP) [88], a multi-drug-resistant protein found in the
syncytiotrophoblast that can remove a variety of compounds out of the cell, thereby poten-
tially impairing the ability for the placenta to clear xenobiotics [89,90]. Subsequent studies
by the same group also found that the function and expression of P-glycoprotein (P-gp),
which is another placental gatekeeper protein, was also decreased by exposure to CBD [91].
Collectively, these studies suggests that exposure to CBD may lead to inadvertent down-
stream insults secondary to CBD exposure, whereby the protective role of the placental
barrier is compromised, leading to an even greater risk of impaired fetal development.

In summary, these studies to date would seem to indicate that ∆9-THC alone leads to
fetal growth deficits via alterations in placental perfusion, ranging from narrow maternal
sinusoids to decreased angiogenesis and fetal blood space. Moreover, results from Natale
et al. reveal that ∆9-THC impairs the placental expression of Glut1 in both the human and
the rat, uncovering an additional mechanism for the fetal growth restriction observed [81].
Further studies are warranted to elucidate the underlying molecular mechanisms involved
and to delineate the contributions of CBD alone (or in combination with ∆9-THC) on
placental function and maternal–fetal outcomes.

2.3. Underlying Mechanisms: Cannabinoids and Placental Subcellular Stress

One underlying mechanism for cannabinoid-induced placental insufficiency may be
subcellular stress. Lojpur and colleagues demonstrated that treatment with ∆9-THC to
human undifferentiated cytotrophoblast BeWo cells induced endoplasmic reticulum (ER)
stress (i.e., higher CHOP, ATF4, ATF6, spliced Xbp1) in a dose-dependent manner mediated
by the CB1 and CB2 receptors [92]. This is interesting given idiopathic IUGR placentas
exhibit ER stress [93] and pharmacological activation of ER stress (e.g., tunicamycin)
leads to FGR through decreases in placental vascular endothelial growth factor 1 (VEGFR-
1), placental glycogen content, and glucose transporter 1 [94]. Given exposure to ∆9-
THC in rat pregnancy results in decreased placental Glut1 [81], chronic ER stress may
be one of the mechanisms of ∆9-THC-induced placental insufficiency. In addition, ∆9-
THC also induces mitochondrial dysfunction in undifferentiated and differentiated BeWo
cells [69,92]. ∆9-THC also decreased mitochondrial size, impaired ATP production, and
reduced mitochondrial respiration in vitro [92]. Many of these findings were reciprocated
in a study by Walker et al., 2020, in differentiated cytotrophoblasts in association with
oxidative stress (e.g., elevated SOD1 and SOD2) and impaired syncitialization [69]. As the
mitochondria and ER are physically connected at sites called the mitochondrial-associated
ER membrane (MAM), which can indirectly influence the production of ATP and respond
to ER signaling, it is not surprising that placental oxidative stress also occurs in conjunction
with ER stress [95]. Furthermore, these in vitro findings with ∆9-THC are consistent with
studies that report mitochondrial dysfunction in IUGR placentas [93,96]. Overall, it seems
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that ∆9-THC-induced ER stress and mitochondrial dysfunction in placenta are consistent
with other models of placental-insufficiency-induced IUGR.

3. Cannabinoid-Induced FGR and Postnatal Hepatic Function and Lipid Metabolism

The liver has an essential role in managing lipid metabolism, and aberrant hepatic
function can result in dyslipidemia, which is associated with obesity and impaired glucose
tolerance [97]. It is well-documented by epidemiological studies that low-birth-weight out-
comes lead to obesity and non-alcoholic fatty liver disease (NAFLD) later in life [20,98–101].
In fact, pre-clinical studies utilizing different means of in utero insults including nicotine-
induced and nutrient restriction-induced FGR result in higher hepatic triglycerides and
cholesterol, respectively [102,103]. We have recently demonstrated that maternal exposure
to ∆9-THC i.p. in rats leads to liver growth deficits at birth followed by complete catch-
up growth by 3 weeks whereby exposed offspring caught-up in body and liver weight
relative to control [81]. In a follow-up study, Oke et al. demonstrated for the first time
that ∆9-THC-induced FGR led to male-specific augmentation of hepatic lipid synthesis
(e.g., DGAT2, ACCa, FABP1, and SCD) as early as 3 weeks [104]. This was partially sus-
tained (DGAT2) in adulthood, culminating to increased hepatic triglycerides and visceral
adiposity [104]. These metabolic deficits observed in adult rats (6 months) were associated
with increased expression of p66shc [104], which targets the mitochondria and leads to
pro-apoptotic reactive oxygen species (ROS) release [105], as well as induces intracellular
lipid accumulation [106]. These mitochondrial defects are believed to be potentiated by
catch-up growth [107], which is known to further increase the long-term risk of metabolic
disease [108,109]. Another mechanism for the increase in hepatic ROS production in these
∆9-THC exposed rat offspring could be attributed to cannabinoid receptors associated
with mitochondrial membranes (mtCB1) [110]. In astrocytes, activation of mtCB1 leads
to decrease in mitochondrial complex I, leading to a reduction of ROS, alterations in the
redox state, and ultimately impacting behavioral outcomes [110]. While the expression
of mtCB1 has not be examined in peripheral tissues, it is tempting to speculate that if
there is a loss of mtCB1 signaling by exogenous cannabinoids after birth, this could further
contribute to the observed increase in complex I and ROS in the livers of ∆9-THC exposed
rat offspring [104].

Oke et al. further elucidated that higher hepatic expression of p66shc in ∆9-THC-
exposed offspring might also be regulated via epigenetic mechanisms. ∆9-THC off-
spring exhibited decreased expression of the hepatic microRNAs, miR-203a-3p and miR-
29a/b/c [104]. Collectively, these microRNAs can influence the expression of p66Shc and
long-term liver health [111–114]. This indicates that there are hepatic epigenetic modifica-
tions associated with an increase in hepatic triglycerides and mitochondrial dysfunction
due to prenatal ∆9-THC exposure [104]. Overall, this study offers an early insight into how
∆9-THC-induced FGR leads to long-term dyslipidemia while highlighting the importance
of catch-up growth as a major driver of these deficits. It also reveals that both mitochondrial
and epigenetic mechanisms may underlie the dysmetabolism observed. However, to date,
there are no studies that examine the long-term metabolic effects of prenatal CBD exposure
on postnatal lipid homeostasis. If prenatal CBD exposure similarly leads to placental
insufficiency and FGR, dyslipidemia may also occur in postnatal life.

It is important to highlight that there can be additional direct effects of ∆9-THC in
fetal liver development that warrant further investigation. This is key for metabolic health
as the rodent liver tissue undergoes major developmental milestones in mid-gestation
and continues to develop in postnatal life [115,116], while human livers are terminally
differentiated at birth. In addition, cannabinoid receptors are expressed early in the fetal
rodent liver with the expression profile of CB1/CB2 changing throughout development,
implicating a potential role in liver development [34].

A third mechanism for prenatal cannabinoid-induced dysmetabolism in the liver may
be due to direct changes in the development of the eCB system itself. Metabolic disease
is associated with an altered eCB system [47], so it is plausible that if in utero exposure
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to exogenous cannabinoids alters the long-term function of eCB system in the offspring,
it could potentially lead to the development of metabolic diseases. In fact, an adverse in
utero environment (i.e., a high-caloric diet) has been shown to impact the endocannabinoid
system in the postnatal liver and adipose tissue [42]. Unfortunately, there are currently no
studies that address the impacts of prenatal cannabinoid exposure on the eCB system (i.e.,
CB1, CB2, AEA, 2-AG, and associated metabolic enzymes) homeostasis in postnatal life.

Endocannabinoids, and particularly CB1, have been shown to play an important role
in metabolic disease such as fatty liver disease, type II diabetes, diet-induced steatosis, and
dyslipidemia and are generally associated with overactivity [117–122]. CB2 receptors could
also be involved as an increase in CB2 receptors in NAFLD was found despite its lack of
expression in a normal adult liver [34,123]. Mechanistically, agonism of the CB1 receptor
increases fatty acid synthesis in the liver and leads to obesity in mice [122], and this was
further supported by subsequent studies whereby CB1 knockout mice exhibited decreased
lipogenesis in the liver, a decrease in diet-induced obesity, and increased leanness [121,124].
It is tempting to speculate that perhaps there might be epigenetic modifications in the
eCB system due to prenatal cannabis exposure, which could lead to long-term or delayed
alteration in the eCB system leading to the development of adult-onset metabolic diseases.
This is conceivable because it has been highlighted that components of the eCB system (e.g.,
CB1, CB2, and FAAH) can be regulated by epigenetic mechanisms in neurodevelopment
upon exposure to exogenous cannabinoids, as reviewed in [125]. While most studies to
date only examine neurological mechanisms, it is possible that peripheral tissue could also
exhibit epigenetic mechanisms.

4. Cannabinoid-Induced FGR and Postnatal Glucose Homeostasis

The pancreas has a major role in glucose homeostasis. As previously mentioned,
epidemiological studies indicate that FGR leads to metabolic syndrome, including T2D
diabetes [21]. This is thought to be attributed to a “thrifty phenotype” whereby in utero
deprivation leads to an adaptive energy-conserving phenotype [21]. In rodents, it has
been previously demonstrated that prenatal exposure to environmental insults such as
drugs (e.g., nicotine and SSRI) and protein restriction leads to impaired pancreatic function
in fetal and postnatal life [126–128]. Therefore, cannabinoid-exposed offspring might
be susceptible given that clinical studies suggest that cannabis leads to low-birthweight
babies and placental abnormalities [9–12]. Moreover, we and others have demonstrated
that specifically ∆9-THC leads to placental insufficiency and FGR [67,81]. Secondly, both
the human and rodent adult and rodent fetal pancreas express components of the eCB
system [43,129,130]. Despite this, there are still extremely limited preclinical studies, and no
clinical studies, on the effects of prenatal cannabinoid exposure and the effects on postnatal
pancreatic function and glucose homeostasis.

One study by Gillies et al. demonstrated that gestational exposure to ∆9-THC leads
to smaller pancreas-to-body-weight ratios at birth [131]. Interestingly, at 3 weeks of age,
female ∆9-THC offspring exclusively exhibited decreases in both total and small-islet
density along with a decrease in β-cell mass (41%) (Figure 1) [131] but no change in α cell
mass [131]. This was associated with rapid postnatal catch-up growth. At 5 months, the
observed sex-specific deficits persisted, and when challenged with a glucose tolerance
test, female ∆9-THC-exposed offspring demonstrated glucose intolerance, despite an aug-
mented insulin response [131]. Notably, these sex-specific effects were not associated with
changes in sex steroid hormones (e.g., testosterone, estrogen, and progesterone) [131,132].
To address if peripheral insulin resistance might be occurring, ∆9-THC female offspring
were challenged with insulin, and an impairment of insulin receptor function was observed
(as indicated by a decrease in phosphorylated Akt [Ser 473]) in the soleus muscle [131]. This
would suggest insulin receptor insensitivity [133]. It should be noted that fasting serum
glucose and insulin levels remained stable, which implies that there might be some β-cell
compensation that over time could lead to β-cell exhaustion, β-cell death, and ultimately
the progression of T2D [134,135]. Overall, these ∆9-THC-exposed female offspring exhibit
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phenotypes resembling the progression to T2D. Further studies are warranted to address
the effects of other constituents of cannabis (e.g., CBD) and the long-term impact on glucose
homeostasis (e.g., >6 months).
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Figure 1. Maternal exposure to 3 mg/kg THC i.p. daily from gestational day 6–22 leads to reduced
pancreatic islet size at 5 months in female offspring. Representative immunohistochemistry of
pancreatic islets immunostained for insulin from vehicle and THC rat offspring.

Notably, despite the observed decrease in islet β cells, Gilles and colleagues did not
observe any changes in proliferation and apoptosis in the pancreas at postnatal day (PND)
21 [131]. One possibility is that these deficits occurred early in gestation by direct effects
of ∆9-THC on the pancreas. This is supported by the fact that the eCB system is present
in fetal pancreatic tissue, and fetal endocannabinoids can directly affect proliferation and
cellular organization of pancreatic islet cells [43]. Previous studies have indicated that
CB1 activation in the pancreas can impair β-cell growth by cell cycle arrest and decrease
survival by stimulating apoptosis [136]. However, to date, the direct sex-specific effects
of ∆9-THC on fetal β-cell development remain elusive. Of course, the indirect effects of
prenatal ∆9-THC on placental insufficiency and fetal organ deficits [67,81] must also be
taken into consideration with respect to long-term glucose intolerance.

As previously speculated in the liver, prenatal cannabinoids could also impact pan-
creatic function through developmental alterations in the eCB system. Preclinical studies
have demonstrated that activation of CB1 receptors promotes lipogenesis and drives diet-
induced obesity [122], whereas CB1 knockouts not only showed opposite effects but also
exhibited no signs of associated insulin resistance [121,124]. Moreover, diabetic patients
exhibit higher serum concentrations of AEA and 2-AG during hyperglycemia [137]. It
seems apparent that the overactivation of the eCB system is associated with T2D. One
study delineated the involvement of eCB system with respect to β-cell loss in T2D [138].
Specifically, in vivo CB1 blockade and macrophage CB1 knockouts were demonstrated to
prevent macrophage infiltration in islet cells, which alleviated T2D phenotypes such as
hyperglycemia and impaired glucose-induced insulin secretion [138]. Interestingly, clinical
trials support the benefits of CB1 antagonists, namely rimonabant, in T2D patients, as they
led to improvements in glycemic control [139,140]; however, rimonabant was withdrawn
from the market due to its serious psychological side-effects. Given the aforementioned
glycemic impairments in glucose homeostasis in ∆9-THC offspring [131], along the eCB
systems involvement in pancreatic development [43], there might be a possibility that in
utero cannabinoid exposure leads to long-term alterations in the eCB system; however,
more studies need to be conducted.
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5. Cannabinoid-Induced FGR and Postnatal Cardiovascular Function

There are currently limited studies that link cannabis use in pregnancy to long-term
cardiovascular dysfunction. This is crucial given prenatal cannabis or ∆9-THC alone
results in FGR [9–12,67,81] and that some of the earliest work in the field of developmen-
tal origins of health and disease (DOHaD) associated low-birthweight outcomes to an
increased risk of cardiovascular disease [17,18]. Furthermore, preclinical animal stud-
ies have demonstrated the adverse effects of maternal protein restriction, nicotine and
hypoxia on the long-term cardiac outcomes in offspring [141–144]; however, no studies
have made the link between maternal cannabinoid exposure to long-term cardiac deficits.
While clinical studies demonstrate that adult cannabis use leads to adverse cardiovas-
cular outcomes [145,146], the long-term effects of prenatal exposure remains elusive. A
recent retrospective cohort study did speculate that cannabis exposure in utero might be
detrimental to heart development given babies born to cannabis had an increased risk of
death within 1 year of birth [OR = 1.35, 95% CI = 1.12, 1.62] [147]. However, the definitive
effects of constituents of cannabis (i.e., ∆9-THC, CBD) on the developing heart warrant
further investigation. Recently, we demonstrated that rat offspring exposed to ∆9-THC
in utero resulted in cardiac growth deficits at birth (Figure 2) [148], followed by cardiac
remodeling and impaired cardiac function at 3 weeks [148]. Specifically, at 3 weeks of age,
∆9-THC-exposed pups exhibit complete catch-up growth concomitant with early signs
of ventricular hypertrophy and increased fibrotic markers, namely collagen type 1 and
3 [148]. This was associated with lower stroke volume and cardiac output. These elevated
markers of cardiac hypertrophy and fibrosis have been previously demonstrated in IUGR
models of maternal nicotine, hypoxia, and protein restriction [141,142,144]. While these
aforementioned studies observed these effects around adulthood (3–7 months old), it is
noteworthy that the ∆9-THC offspring began to exhibit deficits at 3 weeks [148]. Unfor-
tunately, our study did not examine effects in the females, and further studies should
investigate whether these cardiac deficits persist later in life.
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Figure 2. Maternal exposure to 3 mg/kg i.p. daily from gestational day 6–22 results in decreased
heart size and stroke volume at postnatal day 1. Representative echocardiography (long-axial view
of the left ventricle) from vehicle and THC rat offspring at postnatal day 1.

It is reasonable to propose that direct and/or indirect effects might adversely impact
the developing heart. As previously stated, indirect effects include placental deficiency
leading to FGR, which increases the risk of cardiovascular disease in adulthood [17,18].
Furthermore, subsequent postnatal catch-up growth in these ∆9-THC offspring may exac-
erbate the cardiac defects already observed at birth. In fact, early clinical studies found that
low-birthweight females with the highest body weight by 1 year old were at greater risk of
coronary heart disease in adulthood [19]. This provides a foundation that postnatal catch-
up growth can negatively impact the heart. Direct effects could also be at play during fetal
development given that cannabinoids can cross the placenta and ∆9-THC has been demon-
strated to inhibit cardiomyocyte growth in isolated rat cardiomyocytes [149]. Moreover,
CB1 antagonists prevent Doxorubicin-(a chemotherapy medication)-induced apoptosis in
embryonic heart cells [150], while CB1 agonists (AEA, ∆9-THC, and HU-210) have been



Int. J. Mol. Sci. 2021, 22, 9528 10 of 22

demonstrated to decrease mitochondria respiration and mitochondrial membrane potential
in rat heart mitochondria [151]. Overall, these data suggest that maternal exposure to
∆9-THC leads to early onset of cardiac dysfunction associated with postnatal catch-up
growth. Whether these cardiac deficits worsen into adulthood remains to be determined,
especially given the dyslipidemia and dysglycemia exhibited in these offspring [104,131].

Impaired eCB system development may further play a mechanistic role given both
CB1 and CB2 are expressed in the heart, and the eCB system is involved in many cardiac
pathologies [152–154]. In short, evidence suggests that CB2 activation seems to reduce
infarct size in models of ischemic-reperfusion injury [155]. Secondly, CB1 antagonism im-
proved doxorubicin-induced cytotoxicity, hepatic cirrhosis cardiomyopathy, and diabetes-
associated cardiac fibrosis, as reviewed in [155]. Moreover, CB1 and CB2 exhibit opposing
effects, with CB1 upregulation and CB2 downregulation being associated with inflamma-
tion in atherosclerosis [155]. Future studies should examine eCB alteration in long-term
metabolic disease associated with prenatal-cannabinoid-induced FGR and whether there
are long-lasting/delayed effects affecting eCB homeostasis in the heart.

6. Cannabinoid-Induced FGR and Postnatal Reproductive Function

Cannabis has been shown to lead to low-birthweight outcomes [9–11], and preclinical
studies using different maternal insults (i.e., nutrient restriction) indicate that FGR also
negatively impacts offspring ovarian follicles [156–158]. This is not surprising since primor-
dial follicle assembly occurs in utero and generally dictates the number of oocytes in the
offspring. While cannabis consumption has been reported to adversely impact adult female
fertility [33], the effects of gestational exposure on the offspring is not well-understood.

To date, very little is known regarding the effects of prenatal cannabinoids on re-
productive organ development and function. While evidence in humans is lacking, an
elegant study by Castel and colleagues demonstrated that prenatal synthetic CB1/2 ago-
nists (0.5 mg/kg WIN55212) led to long-term decreases in ovarian reserve associated with
altered eCB enzymatic expression in rodent offspring at 3 months [159]. These effects were
shown to be mediated by CB1, as the introduction of an inverse agonist reversed these
effects. Interestingly, these effects were not observed at earlier time points (PND 6 and
PND 40), which suggests these effects were delayed [159]. While this study could suggest
that fetal ovarian CB1 activation leads to deficits in ovarian reserve in adulthood, the
underlying molecular mechanisms resulting in this delay is still unknown. One proposed
mechanism was that there could be increased follicular atresia; however, this was not
examined. Alternatively, given that this study observed long-term alterations in ovarian
eCB enzymes, they also highlight how interruption of eCB in ovarian development could
have lasting epigenetic modifications (as reviewed in [13]); therefore, more studies should
examine the potential epigenetic modification in exposed offspring ovarian follicles. No-
tably, this group did not report any data on birth outcomes and did not observe any deficits
in ovarian reserve in 3-month ∆9-THC-exposed offspring. Building on this, Martinez-Pẽna
et al. recently demonstrated that 3 mg/kg of ∆9-THC during gestation led to accelerated
folliculogenesis and follicular arrest in 6-month-old offspring underpinned by reduced
blood vessel density along with a decrease in pro-angiogenic (i.e., VEGF and VEGFR-2)
and increase in anti-angiogenetic (i.e., TSP-1) markers. Although there was not any re-
ported follicular atresia (e.g., apoptosis) observed (p = 0.197), it could very well progress
later with age. Further studies are necessary to examine the impact of prenatal cannabi-
noids on fertility in females and upon testicular function and fertility in ∆9-THC-exposed
male offspring. Interestingly, an early rodent study found that maternal exposure to CBD
and CBN, but not ∆9-THC, led to male offspring with decreased spermatozoa by almost
20% and significantly fewer live progeny themselves [160]. There may also be epigenetic
mechanisms involved given that ∆9-THC and cannabinoid use can influence sperm DNA
methylation and histone modifications in both humans and rats [161].
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7. Future Studies
7.1. Windows of Maternal Exposure

The studies mentioned in the current review primarily address gestational exposure
to cannabinoids; however, lactational windows of exposure are also important windows of
development for the postnatal liver, adipose, and pancreases [116,162–164]. In addition,
although hearts are generally assumed to be terminally differentiated at birth, rodent hearts
have been shown to undergo a developmental transition period 3–4 days after birth where
they quickly shift from hyperplasia to hypertrophy [165]. This is well within the rodent
breast-feeding period. It is likely that if exposure to cannabinoids continue from gestation
through lactation, the postnatal metabolic consequences would worsen. Moreover, further
studies also need to address whether shorter exposure windows in gestation could decrease
the impact on the placenta and developing fetus. Models with shorter windows of exposure
early in gestation may mimic the tendency for pregnant women to consume cannabis only
to alleviate the symptoms of morning sickness.

7.2. Intergenerational Effects of Maternal Cannabinoid Exposure

Epidemiological studies have demonstrated that the perinatal nutritional status of
the mother can have effects on subsequent generations given that F2 offspring, born from
F1 parents that were undernourished in utero, exhibit increased risk of metabolic dis-
ease (i.e., increased adiposity) later in life [166,167]. Animal studies also suggest that
different maternal insults such as low-protein diet [168], undernutrition [169,170], and
high-fat diet [171,172] lead to dysmetabolism across generations. Given maternal ∆9-
THC exposure leads to FGR and dysmetabolism in FI offspring [81,104,131], it is imper-
ative to address whether the F1 offspring metabolic deficits persists across progeny. In
addition, as previously mentioned, studies with mice found that maternal exposure to
cannabinoids significantly decreased male offspring fertility [160]; they also adversely
affected female offspring gonads [132,159]. Collectively, this suggests that prenatal cannabi-
noids could impact both male and female gamete function, increasing the likelihood of
intergenerational perturbations.

7.3. Paternal Cannabinoid Exposure

Current research in the field of DOHaD tends to focus solely on the maternal envi-
ronment. It is important to address the paternal environment as it may also impact the
development of the fetus. In fact, preclinical and epidemiological studies suggest that an
adverse pre-conceptual paternal environment (i.e., obesity, diabetes, smoking, alcohol, and
bisphenol A exposure) influences placental function and maternal–fetal outcomes which
can lead to dysmetabolism in the offspring [173–179]. With respect to cannabinoid expo-
sure, there is recent evidence that indicates that paternal cannabis and ∆9-THC exposure
leads to DNA methylation in human and rat sperm, respectively [161], which suggests
that it could have downstream consequences for the offspring. Indeed, offspring pater-
nally exposed to ∆9-THC exhibited deficits in cholinergic synapse signaling and impaired
cognitive function [180–182]. Recently, it was demonstrated that 1.5 mg/kg i.p. daily for
five consecutive days of selective CB2 agonist (JWH-133) led to decreased testis size and
sperm count in mice [183]. When exposed males were mated with untreated females, there
was impaired placental development (decrease in spongiotrophoblast area and increased
in labyrinth area) and reduced fetal weights (at e13.5 and e18.5) and birth weights [183].
However, to date, there are no studies that examine the effects of paternal exposure to
∆9-THC and/or CBD on the placental or metabolic health of the offspring. More studies
are warranted to establish this causal link.

7.4. Other Receptors That Are Targeted by Cannabinoids

It is noteworthy that there are receptors other than the canonical cannabinoid receptors,
CB1 and CB2, that cannabinoids can act upon. Namely, orphan G protein-coupled receptors
18 (GPR18), 55 (GPR55), and 119 (GPR119) can be activated by cannabinoids [184,185].
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There are data that suggest GPR55s association with the eCB system, as it can heterodimer-
ize with CB2 [186]. In addition, glycerophosphodiesterase 3 can metabolize GPR55 ligand,
arachidonoyl lysophosphatidylinositol (LPI), into 2-AG and also act as a signaling switch be-
tween GPR55 and CB2, thereby linking GRP55 to canonical cannabinoid receptors [187,188].
Moreover, neurological studies indicate that exogenous cannabinoids (i.e., CBD) also act
on other noncanonical cannabinoid-sensitive receptors, such as transient receptor potential
vanilloid 1 and opioid receptor µ and δ [189], that may be of interest in peripheral tissues.
With respect to metabolic syndrome, emerging data suggest that GPR55 and LPIs are
associated with obesity and adipogenesis [190]. Furthermore, data indicate that GPR55
could influence insulin secretion and subcellular stress in in β-cells [191,192]. More re-
cently, it was demonstrated that GPR55 may have a role in regulating cardiac function,
cardiac immune homeostasis, and remodeling in mouse cardiomyocytes [193]. Given the
potential role of these receptors in metabolic and cardiovascular pathophysiology, further
investigation into these receptors is warranted.

8. Conclusions

Current preclinical data on the effects of perinatal cannabinoid exposure offer a cap-
tivating early insight into the metabolic consequences in the offspring. Although there
are some mixed results in clinical data, pre-clinical animal studies support the idea that
placental abnormalities and fetal growth deficits occur in cannabinoid-exposed offspring
(Supplementary Table S1). This underscores the importance of utilizing an animal model
to remove the confounding variables in clinical research (i.e., socioeconomic studies and
polydrug use), as well as address the contributions of dosing, windows of exposure, and
specific constituents of cannabis (i.e., ∆9-THC and CBD). Yet almost all animal studies
primarily examine the effects of ∆9-THC alone. Nonetheless, emerging pre-clinical data
suggest that ∆9-THC leads to placental insufficiency, early cardiac deficits, dysglycemia
(i.e., glucose intolerance, blunted insulin signaling) and dyslipidemia (i.e., augmented hep-
atic triglycerides, and visceral adiposity) in adult offspring [81,82,104,131,148] (Figure 3).
Furthermore, these data indicate that catchup growth may be playing a major role in
exacerbating these observed deficits. Collectively, it seems that perinatal ∆9-THC exposure
shares similar pathophysiology and patterns with FGR in general. However, it is also
very likely that ∆9-THC and other cannabinoids also exhibit unique and direct effects as
the eCB system is expressed in fetal tissues early in gestation and is involved in proper
placentation and organ development [33,43]. Therefore, there is great impetus to better
understand the mechanisms linking in utero cannabinoid exposure and its impact on fetal
and postnatal development. Moreover, the role of the eCB system in metabolic diseases and
its connection to prenatal cannabinoid exposure needs to be further investigated. These
data are important as ∆9-THC content in cannabis is growing at a considerable rate [23,194].
In addition, CBD is extremely understudied with regards to its safety in pregnancy. This is
still a vital question given that CBD is increasing in its popularity.

In summary, as it has been reported that almost 70% of pregnant and non-pregnant
women perceive slight or no risk of harm in consuming cannabis once or twice a week [195],
it is quite apparent that misconceptions still exist regarding its safety during pregnancy
and postnatal life. Given this, along with increased popularity and legalization of cannabis,
more studies are warranted to assess its safety to aid clinicians and policy-makers in
evidence-informed decision-making. Moreover, with further understanding of the un-
derlying mechanisms involved, safe interventions could be employed to ameliorate the
detrimental metabolic outcomes for children who without choice were exposed to cannabi-
noids in utero.
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