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Abstract 33 

 34 

Background. Age-adjusted US total pediatric cancer incidence rates (TPCIR) rose 49% 1975-35 

2015 for unknown reasons.  Prenatal cannabis exposure has been linked with several pediatric 36 

cancers which together comprise the majority of pediatric cancer types.  We investigated 37 

whether cannabis use was related spatiotemporally and causally to TPCIR. 38 

 39 

Methods.  State-based age-adjusted TPCIR data was taken from the CDC Surveillance, 40 

Epidemiology and End Results cancer database 2003-2017.  Drug exposure was taken from 41 

the nationally-representative National Survey of Drug Use and Health, response rate 74.1%.  42 

Drugs included were: tobacco, alcohol, cannabis, opioid analgesics and cocaine.  This was 43 

supplemented by cannabinoid concentration data from the Drug Enforcement Agency and 44 

ethnicity and median household income data from US Census.   45 

 46 

Results.  TPCIR rose while all drug use nationally fell, except for cannabis which rose.  47 

TPCIR in the highest cannabis use quintile was greater than in the lowest (β-estimate=1.31 48 

(95%C.I. 0.82, 1.80), P=1.80x10-7) and the time:highest two quintiles interaction was 49 

significant (β-estimate=0.1395 (0.82, 1.80), P=1.00x10-14).  In robust inverse probability 50 

weighted additive regression models cannabis was independently associated with TPCIR (β-51 

estimate=9.55 (3.95, 15.15), P=0.0016).  In interactive geospatiotemporal models including 52 

all drug, ethnic and income variables cannabis use was independently significant (β-53 

estimate=45.67 (18.77, 72.56), P=0.0009).  In geospatial models temporally lagged to 1,2,4 54 

and 6 years interactive terms including cannabis were significant.  Cannabis interactive terms 55 

at one and two degrees of spatial lagging were significant (from β-estimate=3954.04 56 

(1565.01, 6343.09), P=0.0012).  The interaction between the cannabinoids THC and 57 

cannabigerol was significant at zero, 2 and 6 years lag (from β-estimate=46.22 (30.06, 62.38), 58 

P=2.10x10-8).  Cannabis legalization was associated with higher TPCIR (β-estimate=1.51 59 

(0.68, 2.35), P=0.0004) and cannabis-liberal regimes were associated with higher 60 

time:TPCIR interaction (β-estimate=1.87x10-4, (2.9x10-5, 2.45x10-4), P=0.0208).  33/56 61 

minimum e-Values were >5 and 6 were infinite. 62 

 63 

Conclusion.  Data confirm a close relationship across space and lagged time between 64 

cannabis and TPCIR which was robust to adjustment, supported by inverse probability 65 
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weighting procedures and accompanied by high e-Values making confounding unlikely and 66 

establishing the causal relationship.  Cannabis-liberal jurisdictions were associated with 67 

higher rates of TPCIR and a faster rate of TPCIR increase.  Data inform the broader general 68 

consideration of cannabinoid-induced genotoxicity. 69 

  70 
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Introduction 71 

 72 

CDC Surveillance, Epidemiology and End Results (SEER) data from 9 US cancer registries 73 

indicates that the age-adjusted total Pediatric (age less than twenty years) cancer incidence 74 

rate (TPCIR) has risen 49.0% from 12.96 to 19.32 / 100,000 from 1975-2015 [1].  Cancer 75 

incidence is U-shaped across the pediatric age range being higher in the under 5 years and 76 

over 14 years age groups [2].  Leukaemias, brain and nervous system, neuroblastoma, soft 77 

tissue sarcoma, lymphoma and testicular cancer are amongst the commonest pediatric cancers 78 

[2, 3]. 79 

 80 

Notwithstanding a generally falling mortality rate from childhood cancer, the TPCIR 81 

incidence is acknowledged to be rising since the records of collated cancer registries were 82 

first published in 1975 [2].  The cause of this unprecednted increase is at present unclear.  83 

Moreover major ethnic differentials are evident for tumours such as All Childhood Cancer 84 

(ACC), acute lymphatic leukaemia (ALL) and brain and testicular cancers where the rates in 85 

African-American patients vary from 20-70% of those in the Caucasian-American 86 

community [2].  Again the reasons for such large ethnic disparities are unknown.  It therefore 87 

appears that several of the major questions relating to the aetiopathogenesis of pediatric 88 

cancer are outstanding. 89 

 90 

Whilst in adult populations the relationship between cannabis use and cancer incidence is 91 

controversial with both positive and negative reports in existence [4, 5], amongst pediatric 92 

populations the situation is much clearer.  It was noted by the California Environmental 93 

Protection Agency in a very detailed literature review that five of six studies reported a 94 

positive relationship [6-11].  Parental cannabis use has been linked with acute lymphatic 95 

leukaemia, acute myeloid leukaemia, childhood astrocytoma, rhabdomyosarcoma and 96 

neuroblastoma [2, 7-12].  Together these comprise 60-70% of the total cancers seen in 97 

children younger than 14 years and those between 15 and 20 years [2].  In such a context it 98 

becomes plausible that the rise in cannabis use since the 1960’s may be a primary driver of 99 

total pediatric cancer. 100 

 101 

Testicular cancer is a particularly interesting case.  It is well established that testicular cancer 102 

occurs mainly in younger men with an age peak at 30-34 years and 20% of cases occur in the 103 

pediatric age range [1].  The testes houses the germ cells and cannabinoids are known to have 104 
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myriad direct effects on the reproductive tract in both sexes [13-17].  There is great 105 

uniformity in studies of the cannabis-testicular cancer link as all four studies found a risk 106 

elevation of over two-fold [18-21] with an overall risk for current, weekly and chronic 107 

smokers of  non-seminomatous germ cell tumours estimated in meta-analysis of 2.59 108 

(95%C.I. 1.60-4.19) [22].  Since pediatric cancer often results from inherited genetic errors 109 

[23, 24] this implies that major genetic errors in germ cells are induced by parental cannabis 110 

exposure.   111 

 112 

Adding to concerns related to the potentially genotoxic actions of prenatal cannabinoid 113 

exposure (PCE) is an increasing interest in elevation of many birth defects following PCE in 114 

Hawaii, Colorado, Canada and Australia [25-28].  A recent report noted a three-fold rise in 115 

total congenital defects in the northern Territories of Canada where more cannabis is smoked 116 

[28].  Downs syndrome, due to a major genetic trisomic error,  has also been found to be 117 

elevated following PCE in Hawaii, Colorado and Australia [25-27] and this syndrome has an 118 

established link with childhood ALL with 6-10% of Downs syndrome children being affected 119 

by this malignancy [29, 30]. 120 

 121 

 122 

As discussed below the physiology and pathophysiology of both the endocannabinoid system 123 

and the impacts of diverse exogenous phytocannabinoids is presently being studied in great 124 

detail and major impacts on reproductive health, genetic and physiological quality of 125 

gametes, epigenetic effects on both DNA methylation and histone synthesis and signalling, 126 

immunomodulatory and mitochondriopathic effects, and transgenerational inheritable 127 

epigenetic effects in both man and mouse are well established and have been demonstrated by 128 

a number of investigators [15, 17, 31-38].   129 

 130 

Concerns are heightened by the recent demonstration that 69% of cannabis dispensaries in 131 

Colorado recommended cannabis use to pregnant patients for various symptoms in a recent 132 

telephone survey [39] and that in 2017 an estimated 161,000 women used cannabis whilst 133 

pregnant across USA [40, 41].   134 

 135 

Taken together these data suggest that an improved understanding of cannabis-related 136 

carcinogenesis in the closely defined pediatric context might well lead to important insights 137 

into cannabis-related genotoxicity more generally [42, 43].  Moreover the advent of 138 



P a g e  | 6 

 

sophisticated geospatial analysis together with some of the formal techniques of causal 139 

inference analysis implies that sophisticated and modern analytical procedures could be 140 

brought to bear on these important and increasingly topical issues.  Techniques such as 141 

inverse probability weighting and e-Values are designed to formally investigate causal, as 142 

opposed to merely associational, relationships. 143 

 144 

The objective of this study was to determine if the rise in pediatric cancers across USA 145 

paralleled the recent rise in the use of cannabis when considered formally across space and 146 

time, and if the relationship met the criteria for causal inference when assessed by strict 147 

quantitative criteria. 148 

 149 

  150 



P a g e  | 7 

 

Methods 151 

 152 

Data.  Annual data on age-adjusted rates of pediatric cancer cases occurring in patients less 153 

than 20 years old was accessed from the publicly available SEER*Explorer website [1].  Data 154 

on state-based pediatric cancer rates was accessed via the SEER*Stat software from the 155 

SEER / NCI database [44].  Drug use data was accessed from the nationally representative 156 

National Survey of Drug Use and Health (NSDUH) conducted by the Substance Abuse and 157 

Mental Health Services Administration (SAMHSA) [45].  This survey reports a 74.1% 158 

response rate [46].  Data on the following drug variables was collated: monthly cigarette use; 159 

annual alcohol use disorder, monthly cannabis use, annual analgesic abuse and annual 160 

cocaine use.  Data on ethnic composition and median household income by state and year 161 

was accessed via the tidycensus package in R from the US Census Bureau.  The ethnicities 162 

for which data was collected were: Caucasian American, African American, Hispanic 163 

American, Asian American, American Indian / Alaskan Native American, Native Hawaiian / 164 

Pacific Islander American.  Data on national cannabinoid concentrations for Δ9-165 

tetrahydrocannabinol (THC), cannabinol, cannabigerol and cannabichromene was obtained 166 

from various published reports [47-49].  Data on cannabis legal status was adduced from an 167 

internet search [50]. 168 

 169 

Derived Data.  Given the clear differences in drug use by ethnicity it was considered 170 

important to formally take ethnic cannabis use into account in regression modelling.  Data on 171 

the frequency of cannabis use by ethnicity was available at the national level from the 172 

SAMHSA Substance Abuse and Mental Health Data Archive (SAMHDA) Restricted Use 173 

Data Analysis System (RDAS) [45].  For each ethnicity and for each year the percentage of 174 

the ethnicity using cannabis at the midpoint of the indicated frequency were multiplied 175 

together and summed to gain an ethnic cannabis use index. Hence if fraction x of an ethnicity 176 

used cannabis from 20-30 days per month then x would be multiplied by 25.  This was 177 

repeated and summed across all use frequencies to obtain a specific ethnic cannabis use index 178 

for that year.  This index was multiplied by the state cannabis use rate and the THC 179 

concentration in that year to derive an estimate of the ethnic exposure to THC in each state.  180 

Similarly the concentration of selected cannabinoids was multiplied by the state cannabis use 181 

rate to derive a state based exposure to that cannabinoid.  Cannabis use quintiles were defined 182 

in each year and concatenated to form strata across all years.   183 

 184 
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Missing data.  The total pediatric cancer rate for Wyoming 2008 was absent.  This was 185 

imputed as the mean of its rate in 2007 and 2009.  The rate of analgesic use was missing for 186 

all states in 2015.  This was imputed as the mean of the state rates for 2014 and 2016. 187 

 188 

Statistics.  R version 4.0.2 (2020-06-22) from CRAN was used for data analysis and accessed 189 

via the RStudio 1.2.5042 (2009-2020) GUI.  Data analysis was performed in September 190 

2020.  Graphs and map-graphs were drawn using packages ggplot, albersusa and sf.  191 

Covariates were log-transformed to approximate normality based on the Shapiro-Wilks test.  192 

Linear, mixed effects, panel, robust marginal structural models and spatial models were 193 

studied using packages base, nlme, plm, survey and splm (spatial panel linear models) 194 

respectively [51-53].  In each case model reduction was performed by the classical technique 195 

of serial deletion of the least significant term.  A variety of modelling procedures was 196 

employed for the following reasons.  Mixed effects regression was useful for state-wise study 197 

of data, for inverse probability weighted corrections, and for generation of standard 198 

deviations which can be input to eValue calculations.  Panel regression modelling was well 199 

suited to the time series sequential nature of the dataset, can be inverse probability weighted 200 

and allowed the use of both lagging and instrumental variables.  Robust regression was 201 

conducted to examine the robust effects after inverse probability weighting.  Spatiotemporal 202 

regression was performed as the data are inherently distributed across space and time and 203 

there was good evidence from the models for both spatial and temporal autocorrelation (see 204 

Results).  As the models also produce a variance estimate their output is well suited to the 205 

calculation of e-Values.  Inverse probability weighting was conducted with the ipw package 206 

and e-Values for regression models were calculated with the package EValue.  Tests for trend 207 

were conducted with the chi squared test in Base.  T-tests were conducted for parametric 208 

group comparisons and were two tailed.  P<0.05 was considered significant throughout. 209 

 210 

Panel analysis utilized the pooling technique, a time effect, the random method of Swarmy, 211 

the instrumental method of Amemiya and were inverse probability weighted.  Robust 212 

structural models were conducted by state and were inverse probability weighted.   213 

 214 

Spatial analysis.  Interstate geospatial linkages were made on the “queen” basis of shared 215 

edges or corners and compiled with the poly2nb function from package spdep.  They were 216 

edited as described so that no state, such as Alaska or Hawaii, was left geospatially isolated 217 

(as shown in Results).  Model specification of spatial models was undertaken from the 218 
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general full model to the specific [54].  That is to say the standard spatiotemporal regression 219 

model was conducted using the splm function spreml (spatial panel random effects maximum 220 

likelihood) including spatial autocorrelation after Kapoor, Kelejian and Prucha [55], random 221 

effects, serial correlation in the residual errors and spatial autocorrelation, coded as sem2srre 222 

in spreml models [52].  Significance of the final model parameters phi, psi, rho and lambda 223 

which quantify random error, serial correlation in the residuals, spatial error correlation and 224 

spatial autocorrelation respectively, confirmed that this maximal structure was appropriate 225 

(see Results tables).  The spatial error adjustment of  Kapoor, Kelejian and Prucha takes into 226 

account spatial correlation in both the exposure and the outcome and this was considered to 227 

be reflective of the real world situation in this case [54].  spreml models do allow the use of 228 

both spatial and temporal lagging which has been utilized as described.  At the time of 229 

writing splm and spreml spatial models do not allow the use of instrumental variables or 230 

inverse probability weighting which implies the need for supplementary techniques. 231 

 232 

 233 

Causal inference.  Two techniques of causal inference were employed.  Inverse probability 234 

weights were constructed for the exposure of interest, monthly cannabis exposure, as a 235 

function of the other drug variables which were our primary variables of interest.  These 236 

weights were used to weight mixed effects, panel and robust regression models appropriately.  237 

The effect of this procedure is to equalize exposure across study groups and has also been 238 

validated for continuous exposures as considered here.  Such techniques are said to create 239 

pseudo-randomized groups from which causal inferences can properly be made.  We also 240 

calculated e-Values which are a measure of the association required of any unmeasured 241 

potential confounder variable with both the exposure and the outcome to discount the 242 

reported results.  In the literature minimum (of the two) e-Values above 1.25 are commonly 243 

considered of relevance [56]. 244 

 245 

 246 

Data availability.  All data, including R code, inverse probability weights, geospatial weights, 247 

and source datasets, has been made publicly available through the Mendeley data base 248 

repository and may be accessed at this URL: http://dx.doi.org/10.17632/cnwv9hdspd.1  . 249 

 250 

 251 

 252 

http://dx.doi.org/10.17632/cnwv9hdspd.1
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Ethics.  The datasets used were all publicly available and de-identified.  No reference has 253 

been made at any point to individually identifiable data.  The present work was approved by 254 

the University of Western Australia Human Research Ethics Committee on June 7th 2019  255 

(No. RA/4/20/4724).   256 

 257 

 258 

 259 

 260 

 261 

  262 
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Results 263 

 264 

Inspection of the SEER*Explorer website shows that at the national level that age-adjusted 265 

rates of several cancers in the pediatric age group (younger than 20 years) are rising including 266 

all cancer and acute lymphatic leukaemia which is the commonest tumour.  The annotation 267 

on the SEER website is made from the JoinPoint program which also comes from NCI and 268 

CDC.  These tumours are listed in Table 1 and illustrated in Figure 1 using data based on 9 269 

US cancer registries 1975-2017.  Supplementary Figure 1 shows other cancers which are 270 

mostly rising utilizing data from 21 US cancer registries 2000-2017. 271 

 272 

Figure 2 shows national drug exposure data from NSDUH 2003-2017 and US Census bureau 273 

median household income data.  It is important to note that exposure to most classes of drugs 274 

is dropping with the notable exception of cannabis.  Since SAMHSA NSDUH data could be 275 

temporally matched to the CDC SEER cancer database for the years 2003-2017, this became 276 

the period of analysis. 277 

 278 

Figure 3 shows the concentration of various cannabinoids found in federal cannabis seizures 279 

1980-2017 [47-49].   280 

 281 

Figure 4 shows the age-adjusted state-based TPCIR plotted as a function of exposure to the 282 

various substances listed.  The regression line for cannabis is noted to be weakly and non-283 

significantly positive. 284 

 285 

Figure 5 shows plots of the TPCIR rate against selected cannabinoids.  The regression lines 286 

for THC and cannabigerol appear to be strongly positive.   287 

 288 

Figure 6 shows the TPCIR as a function of ethnic cannabis exposure.  In each case the 289 

regression line appears to be strongly positive and up-sloping. 290 

 291 

Table 2 lists applicable results from linear regression against time, cannabis, THC, various 292 

substances, cannabinoids and ethnicity.  Many results are significant with the notable 293 

exception of cannabis. 294 

 295 



P a g e  | 12 

 

Figure 7 shows the result of assessing the TPCIR as a function of cannabis use quintiles both 296 

cross-sectionally (boxplots) and over time (scatterplots).  Panel A appears to show a rising 297 

trend with cannabis use quintile.  One notes in particular that the notches of the fourth and 298 

fifth quintiles do not overlap those of Quintiles 1 and 2 which indicates significance.  In 299 

Panel B the highest two quintiles seem to be above the lower ones over time.  Panel C and D 300 

look at the data dichotomized into the two highest quintiles compared to the three lower ones.  301 

Again in Panel C it is clear that the notches of the upper quintiles do not overlap those of the 302 

lower ones.  Panel D shows that this holds true over time.  Raw mean quintile data with 303 

standard errors appears in Supplementary Table 1.   304 

 305 

When comparing the highest and lowest quintile of cannabis use the TPCIR in the highest 306 

quintiles is significantly greater than that in the lowest quintile (t=5.038, df=299.6, 307 

P=8.15x10-7).  Comparing the two dichotomized cannabis quintile groups they are also 308 

significantly different (t=5.641, df=673.6, P=2.4810-8).  The chi squared test for trend across 309 

the quintiles does not reach significance (Chi.Squ.=465.4, df=420, P=0.0623).  When these 310 

data are examined by linear regression the significant results shown in Table 3 are found. 311 

 312 

Table 3.:  Linear Regressions on Quintiles 313 
 314 

 315 
Parameter Estimates Model Parameters 

Parameter 
Estimate (C.I.) 

P-

Value 

R-

Squared F dF P-Value 

              

Quintiles             

lm(Cancer_Rate ~ Quintile)             

Quintile 2 0.2 (-0.29, 0.69) 0.4242 0.04527 9.34 4,745 2.27E-07 

Quintile 3 0.14 (-0.35, 0.63) 0.5655         

Quintile 4 0.72 (0.23, 1.2) 0.0042         

Quintile 5 1.31 (0.82, 1.8) 1.8E-07         

              

Dichotomized Quintiles             

lm(Cancer_Rate ~ Dichotomized_Quintiles)         

Upper_2_Quintiles 0.9 (0.58, 1.22) 3.9E-08 0.0383 30.9 1,748 3.86E-08 

              

Dichotomized Quintiles Over Time           

lm(Cancer_Rate ~ Year + Dichotomized_Quintiles)         

Upper_2_Quintiles 0.9 (0.59, 1.2) 1.1E-08 0.111 47.8 2,747 <2E-16 

              

lm(Cancer_Rate ~ Year : Dichotomized_Quintiles)         

Lower_3_Quintiles 0.139 (0.1, 0.17) 1.2E-14 0.111 47.7 2,747 <2E-16 

Upper_2_Quintiles 0.1395 (0.1, 0.17) 1.0E-14         

 316 
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Table 4 presents results from increasingly complex robust inverse probability weighted 317 

marginal structural models.  Results for additive, interactive with drugs only, interactive 318 

including drugs, race and income and interactive including cannabinoids, drugs, race and 319 

income models are shown.  It is particularly noteworthy that in a simple additive robust 320 

model (listed first in the table) cannabis is independently highly significant (β-estimate=9.55 321 

95%C.I. (3.95, 15.15), P = 0.0016). 322 

 323 

Since these robust models are not accompanied by a model variance it is necessary to also use 324 

a mixed effects model system in order to be able to calculate e-Values subsequently.  Mixed 325 

effects modelling was also conducted after inverse probability weighting.  Again a series of 326 

increasingly complex models is shown progressing through additive, drug-interactive, full 327 

models including drugs, income and ethnicity, and a full model including the two 328 

cannabinoids THC and cannabigerol.  Importantly in the first three models cannabis is 329 

independently highly statistically significant (from β-estimate=79.27 (56.77, 101.78), P = 330 

1.2x10–11).   331 

 332 

Since the data are gridded in space and time they are well suited for panel linear modelling, a 333 

technique which, in addition to inverse probability weighting, allows the added refinements 334 

of instrumental variables and temporal lagging.  Temporal lagging is pathophysiologically 335 

important in such studies as it is likely that any procarcinogenic or environmental exposure 336 

takes some time to work before the clinical and epidemiological impact of genotoxicity 337 

becomes evident.  Again a series of increasingly complex models is presented at increasing 338 

lags.  Cannabis is again highly significant in many terms, including being independently 339 

significant in additive models (from β-estimate=5.31 (1.68, 8.95), P = 0.0042). 340 

 341 

Data is also evidently oriented in space and time and is thus eminently suited for formal 342 

spatiotemporal analysis.  Map-graphs of the data over the 16 years 2002-2017 are shown in 343 

Figure 8.  Figure 9 shows the geospatial relationships between the contiguous American 344 

states and the manner in which links to Hawaii and Alaska have been edited in to define the 345 

final spatial neighbourhood network based on “queen” (edge and corner) contiguity.  This 346 

neighbourhood sparse weights matrix is utilized in all the spatial regressions which follow. 347 

 348 

Table 7 shows the initial results from a series of additive and increasingly complex unlagged 349 

interactive spatiotemporal models.  The table includes the log of the maximum likelihood 350 
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ratio (Log.Lik.) at model optimization, and the specifically geospatial model coefficients phi, 351 

psi, rho and lambda (see Methods).  Since all four of these parameters are generally highly 352 

significant this confirms that the full model specification (denoted ‘sem2srre’ in 353 

splm::spreml) is appropriate.  The Table also lists the standard deviation of each model which 354 

is a required input for E-Value calculation.  Again cannabis is noted to be independently 355 

highly significant in each model.     356 

 357 

Table 8 shows the results of models lagged first just with cannabis and then for all drugs.  358 

Interactive terms including cannabis continue to be highly significant.  Interactive terms 359 

including cannabis are significant from β-estimate=658.72 (396.60, 920.84), P = 8.40x10-7 360 

for cigarettes: cannabis: alcohol interaction at 2 years of lag.  361 

 362 

Table 9 presents results of models lagged in space for cannabis and in time for the other 363 

drugs. 364 

 365 
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Table 10 presents the results of temporally lagged interactive space-time models including the two cannabinoids THC and cannabigerol.  366 

Cannabigerol is independently significant at 2 lags, and the THC:cannabigerol interaction is significant at zero, two and six lags. 367 

 368 

As mentioned in Methods, well described ethnic disparities exist for many tumours including total cancer.  However it is important to consider to 369 

what extent such drug use disparities might account for the known epidemiology of TPCIR .  Table 11 presents an interactive  geospatial 370 

regression of the TPCIR against THC exposure of five races as indicated with highly significant results. 371 

 372 

Table 11.:  Spatially- and Temporally- Lagged Spatiotemporal Models 373 
 374 
 375 

 376 

Parameter Model  

Parameter Estimate (C.I.) P-Value LogLik S.D. 

Model 

Paramet

er 

Estimate P-Value 

                

Cancer Incidence as a Function of Racial Cannabis Exposure               

spreml(Cancer_Rate ~ NHWhite_THC_Exp + NHBlack_THC_Exp * Hispanic_THC_Exp *Asian_THC_Exp * AIAN_THC_Exp )       

Afric-Am._THC_Exp: Hispan.Am_THC_Exp 1.74 (1.18, 2.29) 1.1E-09 -1532.27 1.9803 phi 0.3887 0.0001 

Afric-Am._THC_Exp: Hispan.Am_THC_Exp: Asian-Am._THC_Exp:   AIAN-

Am._THC_Exp 0.15 (0.09, 0.21) 1.9E-06     
psi 

0.1542 0.0005 

Asian-Am._THC_Exp: AIAN-Am._THC_Exp 0.89 (0.37, 1.41) 0.0008     rho -0.4676 0.0002 

Afric-Am._THC_Exp: Hispan.Am_THC_Exp: Asian-Am._THC_Exp -1.11 (-1.55, -0.67) 8.8E-07     lambda 0.4215 8.1E-06 

Afric-Am._THC_Exp: Hispan.Am_THC_Exp:  AIAN-Am._THC_Exp -0.2 (-0.28, -0.13) 4.8E-08           

Caucasian-American_THC_Exposure -1.27 (-1.65, -0.89) 5.0E-11           

 377 

 378 

 379 
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E-Values are an important way of quantitating the magnitude of co-association required of 380 

any unmeasured confounder with both the exposure and outcome variables to explain away 381 

the observed effects.  Table 12 presents selected E-Value calculations from linear, mixed 382 

effects and geospatial models presented in preceding Tables.  The key variable to observe is 383 

the final number at the right hand side representing the minimum E-Value, and should be 384 

read in the light of the observation by one of its originators that E-Values in the literature 385 

over approximately 1.25 are considered noteworthy [56].  In general terms the E-Values fall 386 

in the sequence geospatial models > mixed effects models > linear models, related partly to 387 

the much smaller model variance of more complex models.  388 

 389 

Table 12 lists 56 E-Values related to cannabis or cannabinoids of which 24 are larger than 390 

1,000.  Of the 33 E-Values originating from geospatial models, 20 are larger than 1,000.  The 391 

table lists six minimum e-Values of infinity, three deriving from mixed effects models and 392 

three from geospatial models. 393 

 394 

Given the above compelling data demonstrating a link between rising rates of cannabis 395 

exposure and rising TPCIR an obvious extension of this study was whether the increasing 396 

use, availability and concentration of cannabis associated with more liberal legal paradigms 397 

[57]was associated with elevated TPCIR .  One important caveat on such an investigation is 398 

that since the data only run to 2017 and many populous states had not yet been affected by 399 

the cannabis legalization movement, it may be considered that the data is premature for a full 400 

determination of this potential effect.  Figure 10A shows the rate of TPCIR under various 401 

legal paradigms. Whilst the few states involved with full cannabis legalization at that time 402 

were associated with broad confidence interval bands there is a clear impression in this 403 

Figure that the rate under decriminalization appeared to be at a higher levels than others.  404 

Figure 10B dichotomizes the data into liberal paradigms vs. traditional policies of cannabis 405 

being considered illegal.  Separation of the two regression lines towards the right hand side of 406 

the graph gives a clear impression for a significant interaction between time and 407 

dichotomized legal status. 408 

 409 

These differences are formally assessed in Table 13 by linear regression.  Decriminalized and 410 

legal status are both confirmed to be significant on their own (upper table segment).  In 411 

interaction with time decriminalized status is significant (middle table segment).  412 

Dichotomized legal status is also found to be significant in interaction with time (lower table 413 
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segment, β-estimate=1.87x10-4, (2.9x10-5, 2.45x10-4), P=0.0208).  Table 12 lists the minimum 414 

E-Values associated with these changes as 1.60 and 1.98 for cannabis decriminalization and 415 

full cannabis legalization respectively (at the bottom of the Linear Regression part of Table 416 

12).   417 

  418 
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Discussion 419 

 420 

 421 

Main Results 422 

 423 

The main results of this study confirmed that total Pediatric cancer rates have risen 424 

significantly nationally across USA and this trend holds for the commonest pediatric 425 

malignancies the leukaemias, Non-Hodgkins lymphoma, localized and distant sarcoma and 426 

testicular cancer.  It was important to note across this period that the use of tobacco, alcohol 427 

use disorders, cocaine and analgesic abuse declined as measured in major national surveys 428 

whilst cannabis use alone was rising.  The level of cannabinoids identified in Federal seizure 429 

data also rose for most cannabinoid analytes.  TPCIR rose strongly and significantly as a 430 

function of cannabinoid exposure, but only weakly and non-significantly in bivariate analysis 431 

in relation to cannabis itself.  TPCIR was significantly higher in the two highest cannabis use 432 

quintiles both overall and across time.  Inverse probability weighting was used to equilibrate 433 

cannabis exposure across the cohort.  Indices of ethnic cannabinoid exposure and seizure 434 

cannabinoid concentrations were variously used as instrumental variables to adjust panel 435 

models.   436 

 437 

Cannabis use was independently associated with TPCIR in additive robust marginal 438 

structural, mixed effects, panel and geospatiotemporal models.  Cannabis use was 439 

independently associated with TPCIR in interactive mixed effects and geospatial models.  440 

Cannabis use was linked with TPCIR in various interactions in linear models, robust 441 

marginal, mixed effects, panel and geospatial models.  Cannabis was independently linked 442 

with TPCIR in geospatial models lagged to zero, 1 and 6 years and featured in interactions 443 

lagged to 1,2,4 and 6 years.  When the cannabinoids THC and cannabigerol were studied they 444 

were also linked with TPCIR at high levels of statistical significance at zero, 2, 4 and six 445 

years of lag.   446 

 447 

On sensitivity analysis 49 of 56 minimum e-Values were above 1.25 which is a quoted 448 

threshold for likely causal relationships.  Similarly 31 of 33 geospatial e-Values were above 449 

this threshold.  The highest finite minimum e-Value was 4.14x1089.  Six minimum e-Values 450 

were infinity.   451 

 452 
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The recent trend to cannabis liberalization was associated with elevated TPCIR both as a 453 

group and as an acceleration of the time-dependent trend in cannabis-liberal states. 454 

 455 

Our interpretation of these highly consistent and concordant findings obtained by several 456 

methodologies with instrumental variables, controlling for ethnic cannabinoid exposure, 457 

utilizing robust regression techniques, inverse probability weighting with high levels of 458 

association across both space and time together with very high e-Values is that the 459 

relationship of cannabinoid exposure to total pediatric cancer incidence fulfills the criteria of 460 

causality and explains the increasing rates of pediatric cancer under cannabis-liberal 461 

legislative paradigms, and that this statement is especially true for THC and cannabigerol the 462 

two cannabinoids which show the most consistent rises over time. 463 

 464 

Hence our study is closely concordant with other published series on the link between 465 

pediatric cancer and cannabis use [7-11]. 466 

 467 

 468 

Statistical Comments 469 

It is worth considering briefly the incisive logical power of space-time regression.  To say 470 

that two variables are statistically associated carries a certain weight.  To say that two 471 

variables are closely associated when their distribution is considered across both space and 472 

time simultaneously is strongly suggestive of a presumptively causal relationship.   473 

 474 

Nineteen spatiotemporal models were presented.  In seventeen the spatial error coefficient 475 

rho was significant.  In eighteen the spatial error autocorrelation coefficient lambda was 476 

significant.  And spatial errors adjusted in the manner of Kapoor, Kelejian and Prucha 477 

consistently had higher precision than those adjusted by the algorithm of Baltagi.  Together 478 

this is indisputable evidence of effects operating in a spatially distributed manner, and 479 

represents in the data analytical environment a reflection of the orchestrated campaign across 480 

USA to legalize cannabis which operated in a coordinated manner from the west coast 481 

eastwards. 482 

 483 

Some comments in relation to casual inference and causal assignment are pertinent.  Inverse 484 

probability weighting is a method which is well established to correct for inconsistent 485 

exposures amongst groups.  It is enjoys a strong theoretical and epidemiological evidence 486 
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base [58].  Its effect is to even out exposures between groups and creates pseudo-randomized 487 

populations from which causal implications can appropriately be drawn.  Similarly E-Values 488 

were recently introduced in a formal way to quantitate extraneous confounding from 489 

unmeasured covariates and provides a quantitative magnitude to the level of association 490 

required of unknown factors with both the exposure and the outcome to remove the impact of 491 

any described association [59]. 492 

 493 

 494 

 495 

Mechanisms 496 

 497 

 498 

Of pivotal importance in linking associational findings with causal pathways is the issue of 499 

biological plausibility and the cellular and molecular pathways which might connect the 500 

exposure of interest with the outcome of concern.  The subject of the pro-oncogenic activities 501 

and potential of cannabis, cannabis smoke and cannabinoids is complex major papers have 502 

addressed this issue [14, 26, 28, 32, 34-36, 42, 60-66].   In this paper we will provide a brief 503 

and concise overview of what presently seem to be some of the most important pathways 504 

which are likely to be implicated.  They will be described under nine headings of: 505 

gametotoxicity, genotoxicity, epigenotoxicity, mitochondriopathy, immunomodulation, pro-506 

aging, endovascular ischaemia – hypoxia, sympathetically mediated effects on stem cell 507 

niches and non-linearity of the dose-response genotoxic effect curve.  These domains are not 508 

independent but are themselves interdependent and intricately intertwined.  Whilst most of 509 

the following observations have been experimentally defined the logical sequence has been 510 

filled out where this seems reasonable and concordant with the evidence base. 511 

 512 

Cannabinoids have been detected in seminal fluid and have been linked with DNA nicking 513 

and fragmentation, abnormal sperm nuclear size, gross abnormalities of sperm morphology 514 

including sperm fragmentation, disordered DNA packing and re-packing, disorders of 515 

protamine synthesis, histone-protamine substitution and major disruption of sperm DNA 516 

methylation [15-17, 31, 37, 61, 67, 68].  Cannabinoids have been found in Graafian follicle 517 

and oviduct fluid and have been linked with oocyte nuclear blebbing, nuclear bridging, 518 

chromosomal fragmentation and large scale oocyte loss after the second meiotic cell division 519 

[14, 15, 17].  Cannabis smoke is known to contain all of the carcinogens of tobacco smoke 520 
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including many tars and carcinogens including aromatic amines, polycyclic hydrocarbons, 521 

and tars [69].  Cannabinoid exposure has been linked with nuclear bleb and chromosomal 522 

bridge formation, chromosomal mis-segregation at the anaphase separation, micronucleus 523 

formation [70], transposon activation and chain and ring chromosome formation [14, 32, 34].  524 

Cannabidiol, Cannabinol and THC have been implicated in in chromosomal translocation 525 

formation to the same level seen with cytotoxic drugs [13].  Cannabidiol and cannabidivarin 526 

have been shown to cause double stranded DNA breaks, micronucleus formation and nuclear 527 

buds and bridges in human cells which is worse under oxidative stress [66].  Cannabinoid-528 

induced micronucleus formation is very important as it has been identified as a major engine 529 

of catastrophic damage to the genetic material and one-step chromothripsis, chromoanagensis 530 

and oncogenic transformation [60, 71, 72].  Cannabinoid exposure has been linked with large 531 

scale perturbation of DNA methylation, gross defects in histone synthesis – which necessarily 532 

leave DNA more open and available for transcription which is a pro-oncogenic state – altered 533 

histone signalling, and an inhibition of ATP supply to genetic and epigenetic processes – 534 

most of which are energy dependent – and an inhibition of epigenetic substrate supply [31, 535 

33, 35, 37, 61, 73].  Together these changes may be expected to advance the “epigenetic 536 

clock” which is believed to be one of the key determinants of cellular aging [74, 75].  The 537 

profound implications of major epigenetic reprogramming were highlighted by a recent paper 538 

noting that despite the short half life of immune cells in the circulation – just a few days - the 539 

cellular basis for long lasting immunity is actually epigenetic changes in long lived myeloid 540 

precursor cells which record metabolic and immune activation responses in the coordinated 541 

patterns of their enhancers, promoters, long non-coding RNA’s, DNA methylation and 542 

histone codes which determine chromatin conformation and the assembly of topologically 543 

transcriptionally active domains which functionally facilitate secondary responses to 544 

infection and vaccines [76, 77]. 545 

 546 

The outer mitochondrial membrane not only possess CB1R’s, but indeed the whole of the 547 

cannabinoid signalling transduction machinery found in the plasmalemma also resides in the 548 

inner and outer mitochondrial membrane and within the intermembrane space so that 549 

cannabinoids are an important direct modulator of metabolic state [78-82].  Several adverse 550 

mitochondrial processes are well described including a reduction in the transmembrane 551 

potential across the inner mitochondrial membrane, a reduced synthesis of key oxidative 552 

phosphorylation substrates including the F1-ATPase, increased electron shunting via 553 
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uncoupling protein 2 activation, gross mitochondrial damage and swelling and impairment of 554 

mitonuclear cross-talk and mitonuclear genomic coordination [17, 83-87]. 555 

 556 

There is a rich literature describing both the pro- and anti- inflammatory actions of 557 

cannabinoids.  In this context the proinflammatory CB1R-mediated activities seem to be 558 

especially important [88] as chronic inflammation is a well established cause of cancers in 559 

many tissue beds and occurs by many mechanisms.  One pathway of particular interest is that 560 

cytoplasmic inflammation stimulates the transposons or “jumping genes” of the genome, to 561 

start “jumping” mobile segments and creating genomic havoc.  Micronucleus disruption 562 

releases double stranded DNA into the cytoplasm where it potently stimulates the 563 

cytoplasmic GMP-AMP – STimulator of INterferon Gamma (cGAS-STING) pathway which 564 

further intracytoplasmically stimulates inflammation via interferon-γ and innate immune 565 

signalling and destabilizes the genome [89-91].  The immunosuppressive activities of 566 

cannabinoids may depress the immune response to the developing field change and nascent 567 

tumours.  This cycle could potentially explain the many case reports of cancers occurring in 568 

adults at a younger age than usual and with increased aggressiveness in heavily cannabis 569 

exposed patients [92-95]. 570 

 571 

Cannabis exposure has been found to accelerate organismal cardiovascular aging clinically 572 

[96].  Cannabinoids are known to inhibit stem cell division [34, 97].  This combination of 573 

impaired stem cell activity, reduction of mitochondrial energy generation and a pro-574 

inflammatory milieu are all hallmarks of cellular ageing and the senescence-associated 575 

secretory phenotype [98-100] of growth factors and cytokines which is presumably 576 

stimulated and a key hallmark of aging.  Aging of course is the leading risk factor for most 577 

adult tumours.  In the light of the foregoing cellular changes it would seem that the quality of 578 

cannabinoid-exposed gametes may be broadly seen as defective and they may thus be said in 579 

general terms to likely be “aged” in metabolic, epigenetic and genetic terms.  Cannabinoids 580 

are known to have important effects on the microvasculature and can induce tissue ischaemia 581 

[101-104] which is an important determinant of the hypoxic microenvironment which 582 

stimulates genomic instability and oncogenesis and promotes nascent and mature tumour 583 

growth.  Cannabis addiction is known to feature periods of cannabinoid withdrawal marked 584 

by agitation and manifest sympathetic hyperstimulation [105].  Sympathetic stimulation has 585 

been shown to have direct adverse activities on the stem cell niche of the hair follicle [106] 586 

and likely acts similarly in other stem cell niches. 587 
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 588 

Arguably the most concerning feature of this literature is the apparent threshold effect beyond 589 

which genotoxic and mitochondriopathic changes emerge relatively abruptly.  This implies 590 

that the exponential dose-effect curve seen in many genotoxic assays for cannabinoids [35, 591 

62, 107, 108] can appear to be functionally an abrupt discontinuity in the dose-response curve 592 

at the epidemiological level.  At the community level this implies that a doubling of daily 593 

cannabis use, as has been documented in USA in recent years [109], might reasonably be 594 

linked with a disproportionate response in genotoxic downstream sequaelae such as 595 

congenital anomalies including transgenerationally transmissible carcinogenesis. 596 

 597 

From this brief overview it is apparent that a plethora of cellular oncogenic mechanisms exist 598 

linking exposure to cannabis smoke, cannabis and cannabinoids to the processes of 599 

carcinogenesis. 600 

 601 

 602 

In 1965 Hill described nine criteria as being required of any association in order to assign 603 

causality to the relationship.  Strength of association, consistency amongst studies, 604 

specificity, temporal sequence, coherence with known data, biological plausibility a 605 

biological response or dose-response curve, analogy with similar situations elsewhere and 606 

experimental confirmation were key features [110].   It will be noted that the above analysis, 607 

including the published literature and the cited experimentally demonstrated mechanistic 608 

links, fulfill all of these criteria for the relationship between cannabis exposure and TPCIR . 609 

 610 

 611 

Generalizability 612 

 613 

Our data are population level data derived from publicly available datasets from one of the 614 

world’s most technologically advanced nations.  The underlying population is also 615 

substantial.  Given that our findings are robust to various different methods, fulfill criteria for 616 

causality and are consistent with the majority of the published work in the area we believe 617 

that our findings are robust and widely generalizable.  However as it is clear that cannabis use 618 

is in a state of flux worldwide at the present with rises in the prevalence of use, intensity of 619 

use, and concentration of product we feel that it is important that on-going studies be 620 

conducted in this area to monitor the situation at higher levels of geospatial resolution. 621 
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 622 

 623 

Future Directions 624 

 625 

Further extensions of this work might include detailed dissection of the molecular and 626 

cellular level of the pathways mentioned particularly relating to mitochondrial cannabinoid 627 

signalling, mitochondrial electron leaks and shunts, free oxyradical flux, perturbation of 628 

mitonuclear cross-talk, cannabinoid induced disruption of metabolic supply of epigenetic 629 

substrates, cannabinoid-related disruption of histone synthesis and signalling and the histone 630 

code generally, cannabinoid epigenotoxicity generally and heritable and transgenerational 631 

epigenotoxicity specifically, proinflammatory cannabinoid actions, microvascular-disrupting 632 

and hypoxia-inducing actions, chromosomal mis-segregation and anaphase disruption and the 633 

interaction of cannabinoids with the cGAS-STING cytoplasmic signalling pathway.  634 

Research into cannabinoid interactions with the germ cells, oocytes and sperm, is clearly of 635 

primary and foundational importance to these concerns and should be up-prioritized on 636 

research agendas.  Analytically higher resolution space-time modelling based on more 637 

detailed datasets from CDC and SAMHSA is an obvious task for the near future.  The 638 

incorporation of instrumental variables and inverse probability weights into the space-time 639 

and spatiotemporally lagged models of plm, splm and similar software would allow all the 640 

questions of interest to be addressed in a single modelling framework without the need for 641 

multiple model types as was necessitated in the present report and would likely only require 642 

minimal resources to enable the required programming code to be written for this very 643 

impressive, sophisticated and highly flexible software to be further optimized. 644 

 645 

 646 

Strengths and Limitations.   647 

 648 

Our study has several strengths including using data from a very populous nation, the use of 649 

publicly available datasets, the use of different statistical techniques, the application of 650 

inverse probability weighting and e-Values, two mechanisms well established in the causal 651 

epidemiological literature, the use of geospatiotemporal regression techniques with complex 652 

random error structures, the use of models lagged both spatially and temporally, the use of a 653 

variety of covariates, consideration of substance-exposure indices which is often absent from 654 

many studies, the use of various instrumental variables, the availability of a relatively lengthy 655 
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panel data series for 15 years, and correction for ethnic cannabis exposure as a major 656 

underlying confounding factor.  The absence of geospatial techniques from much of cancer 657 

epidemiology appears to be a major knowledge gap which the present study begins to redress.  658 

It may also be argued that for research enterprises to consume significant public resources but 659 

never be able to provide actual causal advice to their host community at once stretches public 660 

credulity and tests their patience, particularly when well established methodologies are 661 

available which can be used to fill this major knowledge gap.  The deliberate application of 662 

the techniques of formal causal inference in this study thus comprises a major strength.  The 663 

study’s major limitation relates to the unavailability of individual patient-level data which is a 664 

common limitation amongst epidemiological studies.  Due to the complexity of the present 665 

analysis we have not considered further subgroup analyses, either of individual tumours, or 666 

by fascinating sex or ethnic incidence differences.  All of this remains to be done at higher 667 

geospatial resolution by subsequent investigators. 668 

 669 

 670 

Conclusion 671 

 672 

In summary our study confirms previous reports in the literature linking cannabis exposure 673 

with pediatric and testicular cancer [7-11, 18-22] and answers both our opening hypotheses 674 

affirmatively.  We extend and amplify earlier reports in many ways including with the use of 675 

national cancer census data and widely cited nationally representative drug use surveys, the 676 

application of geospatial techniques and the formal techniques of causal inference to the data 677 

series and various technical refinements including the use of several sets of instrumental 678 

variables and various forms of inverse probability-weighted and spatially weighted regression 679 

matrices and robust, panel and linear multivariable techniques.  After including 680 

socioeconomic, ethnic and drug use variables we find robust associations across space and 681 

time for cannabis use and TPCIR and that cannabis, and particularly the cannabinoids THC 682 

and cannabigerol, are independently and interactively associated with TPCIR both in de novo 683 

space-time grids and in spatially and temporally lagged models.  Moreover very high e-684 

Values clearly indicate that the relationship cannot be explained away by unmeasured, 685 

unknown or hypothetical confounding variables.  This analysis is consistent with five 686 

previously reported series comprising the majority of the published literature in the field [7-687 

11], dozens of potential experimentally described mechanistic pathways and fulfill the 688 

paradigmatic Hill criteria of causality [110].  Findings are also consistent with reports of 689 
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elevated rates of congenital anomalies following prenatal cannabis exposure [25-28, 42, 43] 690 

and thus are broadly concordant conceptually with wide ranging and far reaching heritable 691 

cannabinoid-related genotoxicity.  Our analysis also begins to provide insights into the 692 

previously mysterious major differences in cancer incidence between various ethnicities by 693 

indicating that varying ethnic exposures to cannabinoids are of particular concern.  It is 694 

important that this thread be further explored in the future.  Such formal demonstration of 695 

strong evidence of a presumptively genotoxic cannabis-cancer causal link is highly relevant 696 

for the ongoing and currently controversial story of the relationship of cannabis use with 697 

malignant tumourigenesis in adults.  Strong evidence of a robust causal relationship of 698 

cannabis exposure to pediatric and thus transgenerational inheritable genotoxicity carries far 699 

reaching implications for the ongoing public debate relating to the most appropriate forms of 700 

regulation of cannabis and cannabinoids.  Moreover the present analysis powerfully informs 701 

the broader discussion regarding cannabis-related genotoxicity as it relates to adult 702 

tumourigenesis and many congenital anomalies encountered at birth [25-28, 42, 60, 61]. 703 

 704 

 705 

 706 

  707 
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Table 1.:  SEER-Nominated Time Trends of Various Pediatric and Adult Cancers 1074 

 1075 
 1076 

 1077 
 1078 

Cancer 
Observed        

Trend 

Delayed        

Trend 

      

All Pediatric Cancers (<20 Years) Rising Rising 

Pediatric ALL - Acute Lymphatic Leukaemia Rising   

Pediatric AML - Acute Myeloid Leukaemia Rising   

Pediatric Brain Cancer Stable Rising 

Pediatric NHL - Non-Hodgkins Lymphoma Rising Rising 

Sarcoma - All Age Stable   

Sarcoma <20 Year - Localized Rising   

Sarcoma <20 Year - Distant Rising   

Sarcoma All Age - Localized Rising   

Sarcoma All Age - Distant Rising   

Sarcoma All Age Rising   

Pediatric Testes < 20 Years Stable Stable 

Testes < 50 Years Rising Rising 

Testes All Age Rising Rising 

 1079 

  1080 
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Table 2.:  Linear Models:  TPCIR Against Time, Cannabis, Cannabinoids and Ethnicity 1081 

 1082 
 1083 

 1084 

Parameter Estimates Model Parameters 

Parameter 
Estimate (C.I.) Pr(>|t|) 

R-

Squared F dF P 

              

lm(Cancer_Rate ~ Time)             

Year 0.14 (0.1, 0.17) 3.8E-14 0.0725 59.6 1,748 3.80E-14 

              

lm(Cancer_Rate ~ Cannabis)             

mrjmon 1.00 (-1.22, 3.22) 0.3800 -0.0003 0.78 1,748 0.3770 

              

lm(Cancer_Rate ~ Δ9THC)             

Δ9THC 0.33 (0.15, 0.5) 0.0002 0.0169 13.8 1,748 0.0002 

              

lm(Cancer_Rate ~ Exposure * Drug)             

Drug_Rate: Cannabis 4.63 (2.11, 7.15) 0.0003 0.0207 9.82 9,3740 5.39E-15 

Drug_Rate: Alcohol -3.22 (-6.21, -0.22) 0.0356         

Drug_Rate: Analgesics -6.63 (-10.51, -2.75) 0.0008         

Cocaine -1.06 (-1.63, -0.49) 0.0003         

Cannabis -1.32 (-1.89, -0.74) 0.0000         

Drug_Rate -3.63 (-4.86, -2.4) 0.0000         

              

lm(Cancer_Rate ~ Exposure * Cannabinoid)             

Cannabinol 6.54 (5.07, 8.01) < 2E-16 0.0402 18.9 7,2992 <2E-16 

Cannabigerol 7.65 (5.91, 9.38) < 2E-16         

Drug_Rate 2.14 (1.55, 2.73) 0.0000         

Cannabichromene 3.86 (0.29, 7.42) 0.0340         
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Drug_Rate: Cannabichromene -3.02 (-5.4, -0.63) 0.0130         

              

lm(Cancer_Rate ~ Ethnic_THC_Exposure * 

Ethnicity)             

Ethnic_THC_Exposure 0.14 (0.07, 0.21) 0.0001 0.0021 2.57 6,4493 0.0174 

Asian-Am_THC_Exposure 0.28 (0.02, 0.55) 0.0360         

 1085 

 1086 

  1087 
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Table 4.:  Robust Generalized Linear Regression Models 1088 

 1089 
 1090 

 1091 

Parameter Estimate (C.I.) P-Value 

      

Additive Model     

svyglm(Cancer_Rate ~ Cigarettes + Cannabis + Analgesics + Alcohol + Cocaine) 

Cannabis 9.55 (3.95, 15.15) 0.0016 

Alcohol -19.69 (-27.68, -11.7) 1.5E-05 

      

Interactive Model     

svyglm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine) 

Cigarettes: Cannabis: Analgesics 268.42 (91.87, 444.96) 0.0046 

Cigarettes: Analgesics -59.54 (-92.24, -26.84) 0.0009 

      

Full Interactive Model     

svyglm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

White 8.1 (6.04, 10.17) 4.2E-09 

Hispanic 0.74 (0.37, 1.11) 0.0004 

Asian 0.77 (0.38, 1.16) 0.0004 

Cigarettes: Alcohol: Analgesics 331.59 (121.58, 541.61) 0.0038 

Cigarettes: Cannabis: Analgesics 2537.45 (833.94, 4240.95) 0.0060 

Cigarettes 52.94 (15.62, 90.27) 0.0086 

Alcohol: Analgesics 871 (196.96, 1545.04) 0.0158 

Cannabis: Alcohol 543.49 (110.37, 976.6) 0.0189 

Cigarettes: Cannabis -268.79 (-471.82, -65.76) 0.0136 

Alcohol -119.12 (-207.37, -30.87) 0.0120 

Cannabis: Alcohol: Analgesics -4989.69 (-8616.76, -1362.61) 0.0106 



P a g e  | 42 

 

AIAN -6.66 (-11.36, -1.95) 0.0087 

Cigarettes: Analgesics -500.17 (-808.72, -191.63) 0.0030 

      

Full Interactive Model with Cannabinoids     
svyglm(Cancer_Rate ~ Cigarettes * Δ9THC * Cannabigerol * Alcohol + Analgesics + Cocaine + 6_Races + 

Income) 

White 7.87 (5.73, 10.02) 1.9E-08 

Cocaine 25.98 (12.75, 39.21) 0.0005 

Asian 0.68 (0.31, 1.06) 0.0010 

Hispanic 0.59 (0.23, 0.94) 0.0026 

Cigarettes: Δ9THC: Analgesics 34.32 (13.53, 55.11) 0.0026 

Cigarettes: Cannabigerol 270.35 (104.12, 436.59) 0.0030 

Cigarettes: Δ9THC 2.93 (0.58, 5.28) 0.0195 

Δ9THC: Cannabigerol 29.24 (4.95, 53.53) 0.0239 

AIAN -5.96 (-11.16, -0.75) 0.0311 

Cigarettes: Δ9THC: Alcohol -13.34 (-24.92, -1.77) 0.0300 

Cigarettes: Δ9THC: Cannabigerol -103.55 (-181.75, -25.34) 0.0136 

Cannabigerol -115.2 (-189.34, -41.06) 0.0043 

Cigarettes: Analgesics -87.59 (-127.51, -47.66) 1.2E-04 

 1092 
 1093 

 1094 

 1095 
 1096 
 1097 

 1098 
 1099 
 1100 

 1101 
 1102 
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Table 5.:  Mixed Effects Regression Models 1103 

 1104 
 1105 

Parameters Model Parameters 

Parameter Estimate (C.I.) P-Value SD AIC BIC logLik 

              

Additive Model             

lme(Cancer_Rate ~ Cigarettes + Cannabis + Analgesics + Alcohol + Cocaine) 

Cannabis 5.34 (0.07, 10.6) 0.0472 3.43138 3884.77 3912.46 -1936.39 

Analgesics -11.02 (-18.65, -3.39) 0.0048         

              

Interactive Model             

lme(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine) 

Cannabis 72.88 (49.6, 96.15) 1.4E-09 3.31033 3781.12 3836.4 -1878.56 

Cigarettes 43.36 (27.68, 59.04) 8.2E-08         

Alcohol: Analgesics 1523.99 (970.61, 2077.38) 9.3E-08         

Cigarettes: Cannabis: Analgesics 2788.19 (1676.17, 3900.2) 1.1E-06         

Cannabis: Alcohol: Analgesics -4554.93 (-6709.17, -2400.69) 3.8E-05         

Cigarettes: Analgesics -539.08 (-790.18, -287.99) 2.9E-05         

Analgesics -87.43 (-121.63, -53.23) 6.9E-07         

Alcohol -82.06 (-113.58, -50.54) 4.3E-07         

Cigarettes: Cannabis -284.5 (-376.55, -192.45) 2.3E-09         

              

Full Interactive Model             

lme(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6 Races + Income) 

White 11.8 (8.45, 15.14) 1.1E-11 3.18221 3715.57 3784.61 -1842.79 

Cannabis 79.27 (56.77, 101.78) 1.2E-11         

Asian 2.54 (1.8, 3.27) 2.6E-11         

Cigarettes: Alcohol: Analgesics 1636.35 (1108.24, 2164.46) 2.1E-09         
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Cigarettes 45.74 (30.44, 61.04) 7.2E-09         

Cigarettes: Cannabis: Analgesics 2525.7 (1488.65, 3562.75) 2.2E-06         

Alcohol: Analgesics 959.4 (425.8, 1493) 4.5E-04         

Cannabis: Alcohol: Analgesics -4264.85 (-6314.08, -2215.61) 5.1E-05         

Alcohol -93.44 (-124.44, -62.43) 5.5E-09         

Cigarettes: Analgesics -766.56 (-1011.12, -521.99) 1.4E-09         

Cigarettes: Cannabis -290.63 (-373.83, -207.42) 1.7E-11         

Income -9.44 (-12.02, -6.87) 1.7E-12         

              

Full Interactive Model with Cannabinoids         

lme(Cancer_Rate ~ Cigarettes * Δ9THC * Cannabigerol * Alcohol + Analgesics + Cocaine + 6 Races + Income) 

White 15.39 (11.82, 18.96) 1.8E-16 3.16296 3743.28 3798.56 -1859.64 

Asian 2.46 (1.76, 3.16) 1.2E-11         

Cigarettes: Cannabigerol: Alcohol 4741.19 (3077.86, 6404.51) 3.3E-08         

Cigarettes: Δ9THC 26.57 (15.54, 37.6) 2.8E-06         

Δ9THC: Alcohol 14.95 (7.74, 22.16) 5.4E-05         

Hispanic 0.7 (0.14, 1.26) 1.4E-02         

Cigarettes: Cannabigerol -663.69 (-971.24, -356.13) 2.7E-05         

Income -7.76 (-10.11, -5.41) 1.9E-10         

Cigarettes: Δ9THC: Alcohol -240.65 (-304.57, -176.72) 4.6E-13         

 1106 
 1107 
 1108 

  1109 
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Table 6.:  Panel Regression Models 1110 

 1111 
 1112 

 1113 

Model Specification Parameters Model Parameters 

Instrumental 

Variables 

Lagged 

Parameter  
Parameter Estimate (C.I.) P-Value 

Adj. 

R-

Squar

ed 

Chi.S

qu. 
F dF P 

                    

    Additive model               

    plm(Cancer_Rate ~ Cigarettes + Cannabis + Analgesics + Alcohol + Cocaine) 

    Cannabis 5.31 (1.68, 8.95) 0.0042 0.0790 80.6858   3 <2.2E-

16 

    Analgesics -9.3 (-14.93, -3.67) 0.0012           

    Cigarettes -4.53 (-7.15, -1.92) 0.0007           

                    

                    

    Interactive model               

    plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine) 

    Cigarettes: Cannabis 24.47 (11.37, 37.57) 0.0003 0.0663 83.1987   4 <2.2E-

16 

    Cocaine -11.93 (-22.84, -1.02) 0.0321           

    Analgesics -8.25 (-14.2, -2.3) 0.0066           

    Cigarettes -5.83 (-8.92, -2.73) 0.0002           

                    

    Interactive Full model               

    plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

    White 8.57 (7.18, 9.96) <2.2E-16 0.1927 23.5694   13,736 <2.2E-

16 

    Asian 0.92 (0.67, 1.17) 2.0E-12           

    Hispanic 0.71 (0.47, 0.94) 7.1E-09           

    Cigarettes 69.38 (39.16, 99.59) 7.9E-06           

    Cigarettes: Alcohol: Analgesics 1169.92 (598.17, 1741.68) 6.7E-05           

    Cannabis: Alcohol 719.64 (352.45, 1086.83) 1.3E-04           
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    Cigarettes: Cannabis :Analgesics 2926.99 (1407.72, 

4446.25) 

0.0002           

    Analgesics 58.43 (22.7, 94.17) 0.0014           

    Alcohol: Analgesics 709.96 (139.61, 1280.31) 0.0149           

    Cannabis: Alcohol: Analgesics -5916.9 (-9125.97, -

2707.83) 

0.0003           

    Cigarettes: Cannabis -345.82 (-521.51, -170.13) 1.2E-04           

    Alcohol -153.51 (-219.89, -87.13) 6.8E-06           

    Cigarettes: Analgesics -716.53 (-1007.91, -

425.15) 

1.8E-06           

                    

    Interactive Full model - 2 Lags           

  Cigarettes, 2 plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

  Cannabis, 2 White 9.28 (7.88, 10.67) <2.2E-16 0.2014   33.9397 7,642 2.0E-01 

  Analgesics, 2 Asian 0.96 (0.71, 1.22) 2.1E-13           

  Alcohol, 2 Hispanic 0.67 (0.41, 0.94) 9.4E-07           

  Cocaine, 2 Cigarettes 18.29 (9.29, 27.29) 7.6E-05           

    Cigarettes: Alcohol: Analgesics 513.89 (96.6, 931.17) 0.0161           

    Cigarettes: Analgesics -92.64 (-154.24, -31.03) 0.0033           

    Cigarettes: Alcohol -95.72 (-146.79, -44.65) 0.0003           

                    

    Interactive Full model - 4 Lags           

    plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

  Cigarettes, 4 White 8.71 (6.97, 10.46) <2.2E-16 0.1990   17.6055 12,537 <2.2E-

16 

  Cannabis, 4 Hispanic 0.85 (0.54, 1.16) 7.3E-08           

  Analgesics, 4 Asian 0.72 (0.4, 1.05) 1.7E-05           

  Alcohol, 4 Cigarettes: Cannabis 233.66 (115.14, 352.18) 1.3E-04           

  Cocaine, 4 Cigarettes: Alcohol: Analgesics 1975.86 (855.19, 3096.52) 0.0006           

    Cannabis: Alcohol: Analgesics 1972.91 (573.99, 3371.83) 0.0059           

    Alcohol 105.37 (17.01, 193.73) 0.0198           

    AIAN -8.33 (-14.85, -1.8) 0.0127           

    Alcohol: Analgesics -647.54 (-1104.4, -190.68) 0.0057           

    Cannabis: Alcohol -376.97 (-619.06, -134.87) 0.0024           

    Cigarettes: Alcohol -286.48 (-462.48, -110.48) 0.0015           

    Cigarettes: Cannabis: Analgesics -1300.25 (-2003.68, -

596.83) 

0.0003           
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    Interactive Full model - 5 Lags           

    plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

THC Cigarettes, 5 White 6.7228 (5.29, 8.15) <2.2E-16 0.2302 233.988   10 <2.2E-

16 

Cannabigerol Cannabis, 5 Hispanic 0.652 (0.41, 0.89) 7.2E-08           

Cannabinol Analgesics, 5 Asian 0.6755 (0.42, 0.93) 2.6E-07           

Cannabichromen

e 

Alcohol, 5 Cigarettes: Cannabis 28.717 (14.28, 43.16) 0.0001           

  Cocaine, 5 Cigarettes: Cannabis: Alcohol: Analgesics 8122.4789 (3192.57, 

13052.39) 

0.0012           

    Cannabis: Analgesics 463.7354 (130.9, 796.57) 0.0063           

    Cigarettes: Cannabis: Analgesics -1099.2482 (-1927.82, -

270.68) 

0.0093           

    Cannabis: Alcohol: Analgesics -3523.9404 (-5495.28, -

1552.6) 

0.0005           

    AIAN -9.4157 (-14.03, -4.81) 0.0001           

    Cigarettes -5.1117 (-7.44, -2.78) 1.7E-05           

                    

    Interactive Full Model with Racial Cannabis Exposure as Instrumental Variables 

THC Exposure   plm(Cancer_Rate ~ Cigarettes * Cannabis * Analgesics * Alcohol + Cocaine + 6_Races + Income) 

In:   White 0.7294 (-11.72, 25.62) <2.2E-16 0.2300 232.721   9 <2.2E-

16 

Caucas-Am.   Asian 0.1306 (-9.77, 11.17) 9.2E-08           

African-Am.   Hispanic 0.1202 (-9.65, 10.91) 1.6E-07           

Hispan-Am.   Cigarettes: Cannabis: Alcohol: Analgesics 731.4135 (3112.74, 

3129.47) 

2.0E-05           

Asian-Am.   Cannabis: Analgesics 35.5327 (136.48, 152.42) 4.8E-05           

AIAN-Am.   Cocaine 4.9629 (7.98, 18.41) 0.0078           

NHPI-Am.   AIAN 2.3266 (-1.45, -16.93) 7.9E-05           

    Cannabis: Alcohol: Analgesics 378.1363 (-1752.55, -

1770.82) 

3.2E-06           

    Cigarettes: Analgesics 9.4453 (-37.01, -56.39) 7.7E-07           

 1114 
  1115 
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Table 7.:  Introductory Spatiotemporal Models 1116 

 1117 
 1118 

 1119 
 1120 

Parameter Model  

Parameter Estimate (C.I.) P-Value LogLik S.D. 
Model 

Parameter 
Estimate P-Value 

                

Additive Model               

spreml(Cancer_Rate ~ Cigarettes + Cannabis + Alcohol + Analgesics + Cocaine) 

Cannabis 5.16 (2.26, 8.06) 0.0005 -1541.00 1.9451 phi 0.3170 0.0002 

Analgesics -4.6 (-9.18, -0.02) 0.0490     psi 0.1480 0.0007 

Cigarettes -2.72 (-4.85, -0.59) 0.0124     rho -0.4959 2.2E-05 

          lambda 0.4598 8.2E-08 

                

3-Way Interactive model               

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol + Analgesics + Cocaine) 

Cannabis 20.68 (7.02, 34.33) 0.0030 -1541.24 1.9495 phi 0.3466 0.0002 

Cigarettes: Alcohol 48.6 (2.75, 94.46) 0.0378     psi 0.1488 0.0006 

Cigarettes: Cannabis -46.18 (-84.76, -7.6) 0.0190     rho -0.5248 2.4E-06 

Alcohol -25.69 (-44.01, -7.37) 0.0060     lambda 0.4837 1.3E-09 

                

4-Way Interactive model               

spreml(Cancer_Rate ~ Cigarettes * 

Cannabis * Alcohol * Analgesics + 

Cocaine) 

phi 

0.3169 0.0002 

Cannabis 5.42 (2.34, 8.5) 0.0006 -1540.34 1.9470 psi 0.1479 0.0007 

Alcohol -8.18 (-14.61, -1.74) 0.0128     rho -0.4896 3.1E-05 

Cigarettes: Analgesics -31.81 (-56.07, -7.54) 0.0102     lambda 0.4514 2.1E-07 



P a g e  | 49 

 

                

Interactive Full Model - 0 Lags             

spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cigarettes 28.41 (12.48, 44.34) 0.0005 -1520.55 1.8458 phi 0.1709 0.0017 

Cannabis 45.67 (18.77, 72.56) 0.0009     psi 0.1079 0.0138 

White 5.24 (3.38, 7.1) 0.0000     rho -0.4106 0.0029 

Cigarettes: Cannabis: Alcohol 840.86 (416.29, 1265.44) 0.0001     lambda 0.3643 0.0006 

Alcohol: Analgesics 638.1 (283.09, 993.12) 0.0004           

Asian-American 0.6 (0.23, 0.97) 0.0015           

Hispanic-American 0.45 (0.11, 0.79) 0.0089           

Cigarettes: Cannabis: Analgesics 966.38 (184.69, 1748.06) 0.0154           

AIAN-American -8.3 (-15.42, -1.18) 0.0224           

Cigarettes: Analgesics -240.1 (-391.42, -88.77) 0.0019           

Cannabis: Alcohol: Analgesics -2613.19 (-4248.03, -978.35) 0.0017           

Cigarettes: Cannabis -235.06 (-381.19, -88.92) 0.0016           

Alcohol -79.04 (-114.93, -43.14) 1.6E-05           

 1121 

 1122 
 1123 
 1124 

 1125 
 1126 

 1127 
 1128 

 1129 
 1130 
 1131 

  1132 



P a g e  | 50 

 

Table 8.:  Time-Lagged Spatiotemporal Models 1133 

 1134 
 1135 

 1136 

Lagged Variables 

Parameter Model  

Parameter Estimate (C.I.) 
P-

Value 
LogLik S.D. 

Model 

Paramete

r 

Estimate P-Value 

                  

  Full model - 2 Lags - Just Lagging Cannabis             

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cannabis, 2 Caucasian-American 5.3 (3.63, 6.97) 5.3E-10 -1329.42 1.8583 phi 0.1690 0.0037 

  Asian-American 0.63 (0.31, 0.95) 1.3E-04     psi 0.1476 0.0018 

  Hispanic-American 0.54 (0.21, 0.86) 0.0013     rho -0.4435 8.3E-04 

  AIAN-American -11.33 (-18.34, -4.32) 0.0015     lambda 0.4234 9.1E-06 

                  

  Full model - 4 Lags - Just Lagging Cannabis             

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cannabis, 4 Caucasian-American 4.81 (2.92, 6.7) 6.1E-07 -1130.71 1.8616 phi 0.2095 0.0031 

  Asian-American 0.67 (0.31, 1.03) 0.0003     psi 0.1134 0.0356 

  Hispanic-American 0.55 (0.18, 0.92) 0.0037     rho -0.5410 3.0E-05 

  Cigarettes: Cannabis: Analgesics 261.1 (19.06, 503.15) 0.0345     lambda 0.4597 9.1E-07 

  Cannabis: Analgesics -107.34 (-193.09, -21.6) 0.0141           

  AIAN-American -12.1 (-19.56, -4.64) 0.0015           

                  

                  

  Full model - 6 Lags - Just Lagging Cannabis             

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cannabis, 6 Caucasian-American 7.54 (3.96, 11.12) 3.6E-05 -936.96 1.9697 phi 0.2705 0.0022 

  Asian-American 0.95 (0.34, 1.54) 0.0020     psi 0.0992 0.1012 
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  Cannabis 8.49 (1.47, 15.5) 0.0177     rho 0.4222 0.0006 

  Hispanic-American 0.7 (0.11, 1.29) 0.0202     lambda -0.4083 0.0059 

  Cannabis: Analgesics -47.05 (-79.05, -15.03) 0.0040           

                  

  Full Model - 1 Temporal Lag               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cigarettes, 1 Caucasian-American 5.42 (3.72, 7.12) 4.6E-10 -1426.33 1.8466 phi 0.1684 0.0027 

Alcohol, 1 Asian-American 0.67 (0.33, 1) 0.0001     psi 0.1408 0.0016 

Cannabis, 1 Hispanic-American 0.56 (0.22, 0.9) 0.0014     rho -0.4380 0.0009 

Analgesics, 1 Cannabis 7.88 (1.7, 14.06) 0.0125     lambda 0.4226 1.2E-05 

Cocaine, 1 Cigarettes: Cannabis: Alcohol 182.23 (29.55, 334.9) 0.0193           

  AIAN-American -9.03 (-16.1, -1.96) 0.0123           

  Cannabis: Alcohol -114.28 (-198.3, -30.27) 0.0077           

                  

  Full Model - 2 Temporal Lags               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cigarettes, 2 Caucasian-American 9.62 (6.82, 12.43) 1.7E-11 -1317.36 1.8519 phi 0.1408 0.0083 

Alcohol, 2 Cigarettes: Cannabis: Alcohol 658.72 (396.6, 920.84) 8.4E-07     psi 0.1469 0.0018 

Cannabis, 2 Asian-American 1.32 (0.75, 1.89) 6.4E-06     rho 0.3276 0.0126 

Analgesics, 2 Alcohol: Analgesics 306.67 (143.27, 470.07) 0.0002     lambda -0.2888 0.0462 

Cocaine, 2 Hispanic-American 0.69 (0.26, 1.12) 0.0016           

  Income -2.15 (-4.22, -0.08) 0.0415           

  Cannabis: Alcohol: Analgesics -1810.02 (-2618.86, -1001.18) 1.2E-05           

  Cigarettes: Alcohol -133.02 (-184.5, -81.54) 4.1E-07           

                  

  Full Model - 4 Temporal Lags               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Cigarettes, 4 Caucasian-American 5.25 (3.17, 7.33) 7.6E-07 -1129.73 1.8795 phi 0.1863 0.0058 

Alcohol, 4 Cigarettes: Cannabis: Alcohol 472.69 (145.49, 799.88) 0.0046     psi 0.1341 0.0127 
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Cannabis, 4 Asian-American 0.56 (0.16, 0.95) 0.0055     rho -0.4598 0.0040 

Analgesics, 4 Hispanic-American 0.5 (0.13, 0.87) 0.0085     lambda 0.4021 8.6E-04 

Cocaine, 4 Cigarettes: Alcohol: Analgesics 603.85 (143.88, 1063.82) 0.0101           

  Cigarettes: Alcohol -80.89 (-138.89, -22.89) 0.0063           

  AIAN-American -10.99 (-18.8, -3.18) 0.0058           

  Cigarettes: Cannabis: Alcohol: Analgesics -3668.28 (-6170.15, -1166.42) 0.0041           

                  

  Full Model - 6 Temporal Lags               

Cigarettes, 6 spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income) 

Alcohol, 6 Caucasian-American 4.28 (2.17, 6.4) 7.4E-05 -938.093 1.9015 phi 0.2238 0.0053 

Cannabis, 6 Asian-American 0.5 (0.13, 0.87) 0.0089     psi 0.1218 0.0448 

Analgesics, 6 Hispanic-American 0.51 (0.12, 0.91) 0.0115     rho -0.5495 7.7E-05 

Cocaine, 6 AIAN-American -11.64 (-19.61, -3.66) 0.0042     lambda 0.5042 1.8E-07 

 1137 
 1138 

  1139 
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Table 9.:  Spatially- and Temporally- Lagged Spatiotemporal Models 1140 

 1141 
 1142 

 1143 

Lagged Variables 

Parameter Model  

Parameter Estimate (C.I.) 
P-

Value 
LogLik S.D. 

Model 

Parameter 
Estimate P-Value 

                  

  Full Model - 1 Spatial & 1 Temporal Lag               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income)       

Cigarettes, 1 Caucasian-American 4.49 (2.56, 6.41) 

4.9E-

06 -1422.64 1.8639 
phi 

0.1534 0.0041 

Alcohol, 1 Hispanic-American 0.61 (0.26, 0.96) 0.0006     psi 0.1284 0.0043 

Cannabis, Sp1 Cannabis: Analgesics  110.36 (37.53, 183.19) 0.0030     rho -0.3379 0.0408 

Analgesics, 1 Cigarettes: Cannabis: Alcohol 1688.83 (336.9, 3040.77) 0.0143     lambda 0.3229 0.0134 

Cocaine, 1 Asian-American 0.46 (0.09, 0.83) 0.0146           

  Cannabis: Alcohol: Analgesics  -885.51 (-1625.8, -145.21) 0.0191           

  AIAN-American -10.01 (-17.08, -2.94) 0.0055           

  Analgesics -18.96 (-29.31, -8.61) 0.0003           

                  

  Full Model - 2 Spatial & 2 Temporal Lags               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income)       

Cigarettes, 2 Caucasian-American 8.03 (5.67, 10.39) 

2.6E-

11 -1319.97 1.8579 
phi 

0.0990 0.0324 

Alcohol, 2 Asian-American 1.02 (0.53, 1.51) 

5.2E-

05     
psi 

0.1426 0.0032 

Cannabis,  Sp2 Hispanic-American 0.66 (0.33, 0.99) 

9.0E-

05     
rho 

-0.2287 0.3086 

Analgesics, 2 Analgesics 55.5 (26.18, 84.81) 0.0002     lambda 0.2307 0.2080 

Cocaine, 2 Cigarettes: Cannabis: Alcohol: Analgesics 3954.04 (1565.01, 6343.08) 0.0012           

  Cocaine 15.51 (1.58, 29.44) 0.0291           

  Cigarettes: Cannabis: Analgesics -749.24 (-1219.42, -279.07) 0.0018           
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  Alcohol: Analgesics -377.69 (-553.03, -202.35) 

2.4E-

05           

                  

  Full Model - 4 Spatial & Temporal Lags               

  spreml(Cancer_Rate ~ Cigarettes * Cannabis * Alcohol * Analgesics + Cocaine+ 6_Races+Income)       

Cigarettes, 4 Caucasian-American 5.18 (3.29, 7.07) 

7.7E-

08 -1133.35 1.8790 
phi 

0.1850 0.0049 

Alcohol, 4 Asian-American 0.59 (0.25, 0.93) 0.0008     psi 0.1286 0.0176 

Cannabis, Sp4 Hispanic-American 0.52 (0.16, 0.87) 0.0045     rho -0.4868 0.0004 

Analgesics, 4 Alcohol: Analgesics -27.25 (-54.07, -0.43) 0.0464     lambda 0.4290 2.5E-05 

Cocaine, 4 AIAN-American -10.96 (-18.4, -3.51) 0.0039           

 1144 

 1145 
 1146 

 1147 
 1148 
  1149 
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Table 10.:  Spatially- and Temporally- Lagged Spatiotemporal Models 1150 

 1151 
 1152 

Lagged Variables 

Parameter Model  

Parameter Estimate (C.I.) 
P-

Value 
LogLik S.D. 

Model 

Parameter 
Estimate P-Value 

                  

  Cannabinoids               

  Cannabinoids as Main Effects               

  spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine) 

  Caucasian-American 4.83 (2.77, 6.89) 4.5E-06 -1511.96 1.8350 phi 0.2050 0.0009 

  Cigarettes: Alcohol 334 (171.12, 496.88) 0.0001     psi 0.0889 0.0450 

  Alcohol: Analgesics 312 (149.91, 474.09) 0.0002     rho -0.4495 0.0003 

  Cigarettes: Δ9THC: Analgesics 391 (181.28, 600.72) 0.0003     lambda 0.3639 0.0001 

  Δ9THC: Alcohol 116 (51.71, 180.29) 0.0004           

  Cigarettes: Δ9THC: Cannabigerol: Alcohol 4810 (2124.8, 7495.2) 0.0004           

  Δ9THC: Cannabigerol 109 (41.58, 176.42) 0.0016           

  Analgesics 96.5 (35.74, 157.26) 0.0018           

  Asian-American 0.57 (0.19, 0.94) 0.0029           

  Δ9THC: Cannabigerol: Alcohol: Analgesics 5640 (1680.8, 9599.2) 0.0052           

  Hispanic-American 0.41 (0.07, 0.76) 0.0193           

  Cigarettes: Δ9THC 9.01 (0.6, 17.42) 0.0359           

  AIAN-American -8.84 (-16.13, -1.55) 0.0175           

  Cigarettes: Δ9THC: Cannabigerol: Alcohol: Analgesics -18100 (-29977.6, -6222.4) 0.0028           

  Cigarettes: Δ9THC: Cannabigerol -385 (-612.36, -157.64) 0.0009           

  Δ9THC: Cannabigerol: Alcohol -1480 (-2346.32, -613.68) 0.0008           

  Δ9THC: Analgesics -130 (-199.78, -60.22) 0.0003           

  Cigarettes: Δ9THC: Alcohol -384 (-583.92, -184.08) 0.0002           

  Cigarettes: Analgesics -383 (-563.32, -202.68) 3.2E-05           
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  Alcohol -137 (-197.96, -76.04) 1.1E-05           

                  

  Cannabinoids as Main Effects - 2 Lags           

  spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine) 

THC, 2 Caucasian-American 4.63 (2.53, 6.72) 1.5E-05 -1320.47 1.8880 phi 0.1976 0.0021 

Cannabigerol, 2 Cannabigerol 21.6 (9.29, 33.9) 0.0006     psi 0.1322 0.0052 

  THC: Alcohol 10.25 (4.12, 16.37) 0.0010     rho -0.3332 0.0881 

  Asian-American 0.56 (0.17, 0.95) 0.0053     lambda 0.3037 0.0500 

  Cannabigerol: Alcohol: Analgesics 1176.24 (308.66, 2043.82) 0.0079           

  Hispanic-American 0.47 (0.1, 0.84) 0.0117           

  AIAN-American -10.84 (-18.51, -3.17) 0.0056           

  Cannabigerol: Alcohol -288.07 (-474.04, -102.11) 0.0024           

  THC: Cannabigerol: Analgesics 92.38 (39.25, 145.5) 0.0007           

                  

  Cannabinoids as Main Effects - 4 Lags             

  spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine) 

THC, 4 Caucasian-American 4.31 (2.26, 6.36) 3.9E-05 -1126.72 1.8642 phi 0.1876 0.0047 

Cannabigerol, 4 Cigarettes: THC 2.87 (1.47, 4.27) 5.9E-05     psi 0.1223 0.0246 

  Asian-American 0.64 (0.26, 1.03) 0.0010     rho -0.4917 0.0007 

  Hispanic-American 0.58 (0.21, 0.95) 0.0021     lambda 0.3940 0.0004 

  Cigaretes: Cannabigerol: Alcohol 668.38 (191.09, 1145.67) 0.0061           

  Cigarettes -3.45 (-5.85, -1.04) 0.0050           

  AIAN-American -11.66 (-19.15, -4.17) 0.0023           

  Cannabigerol: Alcohol -329.3 (-523.66, -134.95) 0.0009           

                  

  Cannabinoids as Main Effects - 6 Lags             

  spreml(Cancer_Rate ~ Cigarettes * THC * Cannabigerol * Alcohol + Analgesics + Cocaine) 

THC, 6 Cigarettes: THC 28.16 (18.61, 37.71) 7.6E-09 -918.382 1.8922 phi 0.2868 0.0023 

Cannabigerol, 6 THC: Cannabigerol 46.22 (30.06, 62.38) 2.1E-08     psi 0.1197 0.0495 
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  Asian-American 0.67 (0.21, 1.12) 0.0039     rho -0.5066 0.0004 

  Caucasian-American 3.19 (1.01, 5.38) 0.0042     lambda 0.3707 0.0007 

  Cocaine 18.22 (3.99, 32.46) 0.0121           

  Cigarettes: Cannabigerol: Alcohol 724.22 (143.74, 1304.71) 0.0145           

  AIAN-American -10.25 (-18.78, -1.73) 0.0184           

  Cannabigerol: Alcohol -329.39 (-580.71, -78.07) 0.0102           

  Cigarettes: THC: Cannabigerol -177.1897 (-248.1, -106.28) 9.7E-07           

  THC -7.21 (-9.86, -4.55) 1.1E-07           

  Cigarettes -29.01 (-39.21, -18.82) 2.4E-08           

 1153 

 1154 
  1155 
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Table 12.:  Spatially- and Temporally- Lagged Spatiotemporal Models 1156 

 1157 
 1158 

 1159 

Parameter Estimate (C.I.) R.R. (C.I.) E-Values 

        

LINEAR REGRESSION       

Cancer Rate Over Time       

Year 0.14 (0.1, 0.17) 1.06 (1.04, 1.08) 1.31, 1.27 

Cancer Rate by Δ9THC       

Δ9THC 0.33 (0.15, 0.5) 1.15 (1.07, 1.23) 1.55, 1.33 

Cancer Rate by Drug Rate       

Drug_Rate: Cannabis 4.63 (2.11, 7.15) 6.83 (2.41, 19.41) 13.15, 4.25 

Cancer Rate by Cannabinoid Over Time       

Cannabinol 6.54 (5.07, 8.01) 15.54 (8.39, 28.78) 30.58, 16.27 

Cannabigerol 7.65 (5.91, 9.38) 24.71 (11.96, 51.02) 48.91, 23.41 

Drug_Rate 2.14 (1.55, 2.73) 2.45 (1.91, 3.14) 4.34, 3.24 

Cannabichromene 3.86 (0.29, 7.42) 5.04 (1.14, 22.44) 9.54, 1.51 

Cancer Rate by Ethnic Cannabis Exposure       

Ethnic_THC_Exposure 0.14 (0.07, 0.21) 1.06 (1.03, 1.09) 1.31, 1.20 

Asian-Am_THC_Exposure 0.28 (0.02, 0.55) 1.12 (1.01, 1.26) 1.50, 1.10 

Legal Status       

Decriminalized 0.85 (0.44, 1.26) 1.42 (1.20, 1.69) 2..20, 1.69 

Liberal 0.663 (0.35, 0.98) 1.32 (1.15, 1.50) 1.96, 1.58 

Legal 1.3286 (0.47, 2.19) 1.73 (1.21, 2.45) 2.86, 1.72 

Cancer by Legal Status       

Decriminalized 0.78 (0.37, 1.19) 1.38 (1.16, 1.64) 2.11, 1.60 

Legal 1.51 (0.68, 2.35) 1.87 (1.33, 2.66) 3.16, 1.98 

Cancer by Year * Status       
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Year: Decriminalized 0.0003 (0.0001, 0.0005) 1.00013 (1.00004, 1.00021) 1.011, 1.006 

Cancer by Year * Dichotomized_Status       

Year: Liberal 0.0002 (0, 0.0004) 1.00008 (1.00001, 1.00015) 1.0090, 1.0035 

        

MIXED EFFECTS REGRESSION       

Additive Model       

Cannabis 5.34 (0.07, 10.6) 4.11 (1.02, 16.59) 7.70 , 1.18 

Interactive Drugs Model       

Cannabis 72.88 (49.6, 96.15) 5.02E+08 (8.45E+05, 2.97E+11) 1.01E+09, 1.69E+06 

Cigarettes: Cannabis: Analgesics 2788.19 (1676.17, 3900.2) Infinity (2.40E+200, Infinity) Infinity, Infinity 

Full Interactive Model       

Cannabis 79.27 (56.77, 101.78) 7.00E+09 (1.14E+07, 4.31E+12) 1.40E+09, 2.27E+07 

Cigarettes: Cannabis: Analgesics 2525.7 (1488.65, 3562.75) Infinity (1.38E+185, Infinity) Infinity, Infinity 

Full Interactive Model with Cannabinoids     

Cigarettes: Cannabigerol: Alcohol 4741.19 (3077.86, 6404.51) Infinity (Infinity, Infinity) Infinity, Infinity 

Δ9THC: Alcohol 14.95 (7.74, 22.16) 73.78 (9.31, 584.34) 147.07, 18.12 

Cigarettes: Δ9THC 26.57 (15.54, 37.6) 2.09E+03 (87.97, 4.95E+04) 4.18E+03, 175.45 

        

GEOSPATIAL REGRESSION       

Additive Model       

Cannabis 5.16 (2.26, 8.06) 11.18 (2.89, 43.30) 21.84,. 5.22 

3-Way Interactive model       

Cannabis 20.68 (7.02, 34.33) 1.55E+04 (26.85, 9.01E+06) 3.11E+04, 53.19 

4-Way Interactive model       

Cannabis 5.42 (2.34, 8.5) 12.61 (2.99, 53.07) 24.71, 5.45 

Interactive Full Model - 0 Lags       

Cannabis 45.67 (18.77, 72.56) 6.00E+10 (1.07E+04, 3.45E+15) 1.20E+120, 5.15E+04 

Cigarettes: Cannabis: Alcohol 840.86 (416.29, 1265.44) 1.09E+180 (2.07E+89, 5.78E+270) Infinity, 4.14E+89 

Cigarettes: Cannabis: Analgesics 966.38 (184.69, 1748.06) 8.18E+206 (7.64E+39, Infinity) Infinity, 1.52E+40 
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Time Lagged Models       

Full model - 4 Lags - Just Lagging Cannabis     

Cigarettes: Cannabis: Analgesics 261.1 (19.06, 503.15) 8.26E+39 (0.07, 9.56E+80) 1.65E+40, 1.00 

Full model - 6 Lags - Just Lagging Cannabis     

Cannabis 8.49 (1.47, 15.5) 50.45 (1.98, 1.28E+03) 100.41, 3.39 

Full Model - 1 Temporal Lag       

Cannabis 7.88 (1.7, 14.06) 48.60 (2.32, 1.016E+03) 96.68, 4.07 

Cigarettes: Cannabis: Alcohol 182.23 (29.55, 334.9) 1..00E+39 (2.45E+06, 4.07E+71) 1.99E+39, 4.91E+06 

Full Model - 2 Temporal Lags       

Cigarettes: Cannabis: Alcohol 658.72 (396.6, 920.84) 3.76E+140 (5.65E+84, 2.53E+196) 7.58E+140, 1.13E+85 

Full Model - 4 Temporal Lags       

Cigarettes: Cannabis: Alcohol 472.69 (145.49, 799.88) 9.42E+126 (2.81E+30, 3.15E+223) 1.88E+127, 5.62E+30 

        

Space-Time Lagged Models       

Full Model - 1 Spatial & 1 Temporal Lag       

Cannabis: Analgesics  110.36 (37.53, 183.19) 2.51E+23 (9.78E+07, 6.48E+38) 5.03E+23, 1.95E+08 

Cigarettes: Cannabis: Alcohol 1688.83 (336.9, 3040.77) Infinity (1.033E+72, Infinity) Infinity, 2.07E+72 

Full Model - 2 Spatial & 2 Temporal Lags       

Cigarettes: Cannabis: Alcohol: Analgesics 3954.04 (1565.01, 6343.08) Infinity (Infinity, Infinity) Infinity, Infinity 

        

Cannabinoid Models       

Cannabinoids as Main Effects       

Cigarettes: Δ9THC: Analgesics 391 (181.28, 600.72) 1.62E+84 (1.65E+39, 1.59E+129) 3.24E+84, 3.30E+39 

Δ9THC: Alcohol 116 (51.71, 180.29) 1.11E+25 (1.68E+11, 7.41E+38) 2.23E+25, 3.36E+11 

Cigarettes: Δ9THC: Cannabigerol: Alcohol 4810 (2124.8, 7495.2) Infinity (Infinity, Infinity) Infinity, Infinity 

Δ9THC: Cannabigerol 109 (41.58, 176.42) 2.45E+23 (7.67E+08, 7.83E+37) 4.90E+23, 1.54E+09 

Δ9THC: Cannabigerol: Alcohol: Analgesics 5640 (1680.8, 9599.2) Infinity (Infinity, Infinity) Infinity, Infinity 

Cigarettes: Δ9THC 9.01 (0.6, 17.42) 87.15 (1.35, 5.61E+03) 173.80, 2.04 
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Cannabinoids as Main Effects - 2 Lags       

Cannabigerol 21.6 (9.29, 33.9) 3.32E+04 (89.18, 1.23E+07) 6.64E+04, 177.84 

THC: Alcohol 10.25 (4.12, 16.37) 139.58 (7.34, 2.65E+03) 278.66, 14.15 

Cannabigerol: Alcohol: Analgesics 1176.24 (308.66, 2043.82) 1.66E+246 (9.51E+64, Infinity) Infinity, 1.91E+65 

Cannabinoids as Main Effects - 4 Lags       

Cigarettes: THC 2.87 (1.47, 4.27) 4.06 (2.06, 8.04) 7.58, 3.52 

Cigarettes: Cannabigerol: Alcohol 668.38 (191.09, 1145.67) 5.01E+141 (5.21E+40, 4.82E+242) 1.00E+142, 1.04E+41 

Cannabinoids as Main Effects - 6 Lags       

Cigarettes: THC 28.16 (18.61, 37.71) 7.61E+05 (7.76E+03, 7.46E+07) 1.52E+06, 1.55E+04 

THC: Cannabigerol 46.22 (30.06, 62.38) 4.50E+09 (1.92E+06, 1.06E+13) 9.01E+09, 3.84E+06 

Cigarettes: Cannabigerol: Alcohol 724.22 (143.74, 1304.71) 1.82E+151 (1.84E+30, 1.80E+272) 3.64E+151, 3.68E+30 

        

Ethnicity Models       

Cancer Incidence as a Function of Racial Cannabis Exposure     

Afric-Am._THC_Exp: Hispan.Am_THC_Exp 1.74 (1.18, 2.29) 2.22 (1.72, 2.86) 3.86, 2.86 
Afric-Am._THC_Exp: Hispan.Am_THC_Exp: Asian-

Am._THC_Exp:   AIAN-Am._THC_Exp 0.15 (0.09, 0.21) 1.51 (1.18, 1.91) 2.38, 1.66 

Asian-Am._THC_Exp: AIAN-Am._THC_Exp 0.89 (0.37, 1.41) 1.06 (1.04, 1.10) 1.34, 1.24 

 1160 
 1161 
 1162 
  1163 
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Table 13.:  Linear Regressions for Legal Status 1164 

 1165 
 1166 

Parameter Estimates Model Parameters 

Parameter 
Estimate (C.I.) P-Value 

R-

Squared F dF P-Value 

              

Cancer by Status             

lm(Cancer_Rate ~ Legal_Status)             

Decriminalized 0.78 (0.37, 1.19) 2.0E-04 0.0268 7.88 3,746 3.49E-05 

Legal 1.51 (0.68, 2.35) 4.0E-04         

              

Cancer by Year * Status             

lm(Cancer_Rate ~ Year * Legal_Status)           

Year 0.13 (0.09, 0.16) 4.3E-11 0.0809 17.5 4,745 1.01E-13 

Year: Decriminalized 0.0003 (0.0001, 0.0005) 4.4E-03         

              

Cancer by Year * Dichotomized_Status           

lm(Cancer_Rate ~ Year * Dichotomized_Status)           

Year 0.128 (0.09, 0.16) 9.8E-12 0.0778 32.6358 2,747 2.58E-14 

Year: Liberal 0.0002 (0, 0.0004) 2.1E-02         

 1167 
 1168 

 1169 

 1170 

  1171 
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Figure Captions 1172 

 1173 
 1174 
Figure 1.:  Pediatric Cancers 1975-2017, CDC SEER Explorer Dataset, USA National Level, 1175 

data derived from 9 cancer registries. 1176 
 1177 
 1178 
Figure 2.:  Drug use over time.  Data from NSDUH 2002-2017, SAMHSA. 1179 
 1180 

 1181 
Figure 3.:  Cannabinoid concentrations in Federal Seizures of Cannabis over time, Drug 1182 
Enforcement Agency data [47-49]. 1183 
 1184 
 1185 

Figure 4.:  Total pediatric cancer incidence rate as a function of drug exposure. 1186 

 1187 

 1188 
Figure 5.:  Total pediatric cancer incidence rate as a function of estimated state level 1189 
cannabinoid exposure. 1190 
 1191 

 1192 
Figure 6.:  Total pediatric cancer incidence rate as a function of estimated ethnic THC 1193 

exposure. 1194 
 1195 
 1196 

Figure 7.:  Total pediatric cancer incidence rate by cannabis use quintiles.   (A) Boxplot over 1197 
aggregated time.  (B) Scatterplot over time by cannabis use quintiles.  (C) Boxplot by 1198 

dichotomized cannabis use quintiles, highest two quintiles vs. the lowest three.  Note non-1199 

over-lapping notches indicating significant differences.  (D) Scatterplot over time of total 1200 

pediatric cancer incidence rate by dichotomized cannabis use quintiles. 1201 
 1202 
 1203 
Figure 8.:  Map graph of total pediatric cancer incidence rate by state over time sequence, by 1204 

year. 1205 
 1206 
 1207 
Figure 9.:  Geospatial linkages used for geospatiotemporal regression analyses.  Note Alaska 1208 
and Hawaii elided arithmetically onto continental USA.  (A) Edited spatial links.  (B) Final 1209 

links. 1210 
 1211 
 1212 
Figure 10:  Effect of Cannabis Legal Status on total pediatric cancer incidence rate.  (A) 1213 

Scatterplot of legal statuses over time.  (B) Scatterplot of legal status over time dichotomized 1214 
as illegal status vs. liberal regimes. 1215 
 1216 

 1217 
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Supplementary Table 1.:  Cannabis Quintile Data 

 

 

 

 

 

Quintile Cannabis Exposure Cancer Rates 

      

Quintiles     

Quintile 1 0.1101 (0.0038) 17.2941 (0.1913) 

Quintile 2 0.1349 (0.0042) 17.4933 (0.1763) 

Quintile 3 0.1552 (0.0044) 17.4381 (0.1806) 

Quintile 4 0.1731 (0.005) 18.0087 (0.1581) 

Quintile 5 0.2304 (0.0062) 18.6060 (0.1767) 

      

Dichotomized Quintiles     

Lower Quintiles 0.1331 (0.0025) 17.4076 (0.1055) 

Upper Quintiles 0.2018 (0.0043) 18.3073 (0.1196) 
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