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The epigenome consists of nuclear information, heritable dur-
ing cell division, that controls development, tissue differentiation, and cel
lular responsiveness. Epigenetic information is controlled by genome se

quence, environmental exposure, and stochasticity, or random chance. As such, 
epigenetics stands at the interface of the genome, development, and environmental 
exposure.

All cells of the body have essentially the same DNA, yet different organs and 
tissues serve vastly different functions and also retain their identity as their cells 
divide. This cellular identity is epigenetic information, or information that is 
added onto the genes themselves. As originally defined in the 1950s by the embry
ologist Conrad Waddington, epigenetics is the branch of biology that studies the 
interactions between genes and their products that bring phenotype into being.1 
Waddington’s definition was based on a highly deterministic view of the ultimate 
destiny of tissue development: although it might vary somewhat according to envi
ronmental exposure, the end point was inexorably determined by the genes, not the 
environment. Waddington described an “epigenetic landscape,” in which a pluri
potent cell acquires differentiated properties as it rolls down “canals” to its even
tual fate.

A major change in epigenetic thinking came from the realization that the en
vironment has a profound effect on developmental plasticity, particularly with 
aging and susceptibility to common disease.2 The modern definition of epigenetics 
takes this plasticity into account: modifications of DNA or associated factors that 
have information content, other than the DNA sequence itself, are maintained 
during cell division, are influenced by the environment, and cause stable changes 
in gene expression. Thus, the epigenetic landscape is now viewed more dynami
cally than it was initially.3

For ms of Epigene tic Infor m ation

Epigenetic information takes three forms, the first of which is DNA methylation 
(see the Glossary), a covalent modification of the nucleotide cytosine at the 5′ 
position, which is generally associated with gene silencing (Fig. 1). DNA methyla
tion is the bestunderstood epigenetic modification and the clearest example of 
epigenetic information for several reasons. First, the information can be copied, 
in this case by the enzyme DNA methyltransferase 1, which recognizes hemimethyl
ated CpG sites (locations in DNA at which a cytosine precedes a guanosine in the 
5′ to 3′ sequence) on newly replicated DNA and methylates the daughterstrand 
cytosine at the complementary CpG. Second, the information can be interpreted, 
in this case by differential binding of transcription factors and enhancers, depending 
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on the methylation state. Third, new sites of 
DNA methylation can be introduced by de novo 
methyltransferases. Finally, the information can 
be erased, either passively during cell division or by 
means of an enzymatic process involving ten
eleven translocation (TET) methylcytosine dioxy
genases, followed by glycosylation and replace
ment with an unmethylated cytosine.4 DNA 
methylation is the most useful epigenetic mark
er for human disease studies because it is stable 
over a period of decades and is present in archi
val specimens, including paraffin blocks.5

The second form of epigenetic information 
comprises more than 200 known posttransla

tional modifications of nucleosomal histones 
about which the double helix is itself wound, in 
an ATPindependent process involving acetyla
tion, methylation, phosphorylation, ubiquitylation, 
and sumoylation. Each modification is associat
ed with gene activity, gene silencing, or insula
tion between active and inactive gene regions 
(Fig. 1). Posttranslational modifications act 
through recruitment of transcription factors, acti
vation of transcriptional enhancers, recruitment 
of repressive proteins, and interaction with the 
DNA methylation machinery. Just as DNA meth
ylation can be erased, so too can posttransla
tional modifications (e.g., by lysine demethylases 

Differentially methylated position (DMP): A site of DNA methylation that is evaluated in epigenome-wide association 
studies.

Differentially methylated region (DMR): A region of DNA methylation that is evaluated in epigenome-wide association 
studies.

DNA methylation: A covalent modification of the nucleotide cytosine, which is heritable during cell division and is asso-
ciated generally with gene silencing.

Entropy: A measure of disorder in a system; specifically, in information theory, a measure of unpredictability (known as 
Shannon entropy), defined as the sum of P(x

i
)logP(x

i
) of each state x

i
 of a discrete random variable X.

Epigenetic epidemiology: The study of the relationship between epigenetic variants and disease phenotype in the popu-
lation.

Epigenetic mediators: The gene targets of epigenetic modifiers that contribute to stem-cell–like phenotypes in cancer 
cells, including cellular reprogramming factors.

Epigenetic modifiers: Genes whose products modify the epigenome directly through DNA methylation, post-translational 
modifications of chromatin, or higher-order chromatin structure; they are commonly mutated in cancer.

Epigenetic modulators: Factors that influence the activity or localization of epigenetic modifiers, representing a bridge 
between the environment and the epigenome.

Epigenetic stochasticity: A normal developmental, injury-response, or cancer-associated mechanism for increased vari-
ability of epigenetic marks at a given location. Cancer-associated epigenetic stochasticity leads to tumor-cell hetero-
geneity and increased survival of tumor cells in an environment undergoing change (e.g., as a result of metastasis  
or chemotherapy).

Epigenome: The epigenetic information in a cell, comprising DNA methylation, post-translational modifications of his-
tones, and higher-order chromatin structure.

Epigenome-wide association studies (EWAS): Studies of the relationship between epigenetic variants (differentially 
methylated regions [DMRs] or differentially methylated positions [DMPs]) in the population and disease phenotypes.

Genetic methylation unit (GeMe): A cluster of differentially methylated positions (DMPs) and the single-nucleotide 
 polymorphisms (SNPs) regulating their methylation in the same chromosomal region; GeMes include methylation 
quantitative trait loci (MeQTLs) and also noncontiguous regions separating the DMPs and their controlling SNPs, 
even outside the same linkage disequilibrium block.

Genomewide association studies (GWAS): Studies of the relationship between DNA variants (generally single-nucleotide 
polymorphisms [SNPs], but also copy-number variants) in the population and disease phenotypes.

Genomic imprinting: Parent-of-origin–specific epigenetic marks generally associated with comparative silencing of the 
allele transmitted to the offspring, regardless of the sex of the offspring.

Large organized chromatin lysine (K) modifications (LOCKs): Histone 3 (H3) lysine 9 (K9) dimethylation and trimethyl-
ation regions associated with gene silencing, lamina-associated domains (LADs), and large, DNA-hypomethylated 
blocks in cancer.

Methylation quantitative trait loci (meQTLs): Single-nucleotide polymorphisms (SNPs) associated with differentially 
methylated positions (DMPs), constituting a link between genomewide and epigenome-wide association studies.

Glossary
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and deacetylases and by replacement of histone 
3 with histone 3.3), but how information is cop
ied during cell division is less clear. A related 
form of epigenetic information is nucleosome 
remodeling by means of an ATPdependent pro
cess that changes the density of nucleosomes, 
making them more or less available for tran
scription. The replication of this pattern during 
cell division is even more opaque. An outstand
ing review of chromatin modifications is avail
able elsewhere.6

The third form of epigenetic information is 
higherorder chromatin structure, examples of 
which include loop organization revealed by 
chromosomeconformationcapture methods (i.e., 
techniques used to analyze the higherorder or
ganization of chromatin in a cell); large, organized 
chromatin lysine (K) modifications (LOCKs) that 
condense a major fraction of the silent genome7; 
and nuclear laminaassociated domains (LADs)8

involved in nuclear compartmentation of multi
gene regions (Fig. 1). This higherorder chroma

Figure 1. The Cellular Nature of Epigenetic Information.

The DNA double helix is modified at the nucleotide cytosine by DNA methylation (brown dots). The nucleosomes around which the 
DNA is coiled undergo post-translational modifications of their component histones (green dots, depicting activation marks; red dots 
depict silencing marks), leading to gene activation (light-blue nucleosomes, with RNA transcripts originating nearby) or silencing (dark-
blue nucleosomes). Higher-order chromatin structure involves nucleosomal compaction often near the nuclear membrane (heterochro-
matin) or nucleosomal accessibility (euchromatin). The nuclear periphery is primarily repressive but probably also contains transcrip-
tionally permissive subcompartments. Higher-order large blocks of heterochromatin often involve large epigenomic domains termed 
lamina-associated domains (LADs) and large, organized chromatin lysine (K) modifications (LOCKs). In cancer, both large and smaller 
heterochromatic domains become euchromatic. In addition, epigenetic modulators such as environmental exposure and aging, as well 
as cancer mutations in epigenetic modifier genes, affect the expression of epigenetic mediators controlling pluripotency and cellular 
self-renewal. All these factors lead to increased stochastic gene expression in cancer, promoting tumor-cell heterogeneity and cancer-
cell survival in a changing environment (e.g., as a result of metastasis or chemotherapy).
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tin structure also partitions the genome into 
regions of many tens of kilobases, which can 
coassociate in topologically associated domains 
(TADs) that allow for enhancer–promoter inter
action.9,10 These domains have some tissue spec
ificity, with relevant functional genomic elements 
juxtaposed for the purpose of a particular organ 
or set of cells.

Modul ation of Epigene tic 
Infor m ation  

by  the En v ironmen t

Human epidemiologic studies have long pointed 
to the role of diet in changing the genetic pro
gram over multiple generations. Men whose 
grandfathers were exposed to the Swedish fam
ine in Överkalix before puberty tend to die at an 
earlier age from various common diseases than 
men whose grandfathers were not exposed to 
the famine.11 Both the Dutch Hunger Winter and 
the Great Leap Forward of China involved mass 
starvation of the population, and in both cases, 
fetal exposure to famine during the first trimes
ter of gestation was associated with an incidence 
of schizophrenia in adulthood that was twice as 
high as the incidence among adults who had not 
been exposed during gestation.12

The first convincing example of intergenera
tional dietary epigenetic effects was an experi
ment involving mice with an insertional muta
tion in the Agouti locus that controls coat color 
and weight, termed Avy (Agouti viable yellow). 
These phenotypes are regulated by dietary me
thionine, the essential amino acid precursor for 
DNA methylation. When pregnant dams are ex
posed to a diet rich in methionine, Avy is variably 
silenced, with pups in the same litter having a 
range of phenotypes from brown and thin to 
yellow and obese.13 A great deal of epidemio
logic evidence supports a relationship between 
dietary exposure in early life and longterm 
health,14 an idea first proposed by Barker and 
Osmond15 and supported by more recent studies.16

Moreover, diet can cause profound changes in 
the epigenome, leading to human disease. For 
example, deprivation of the essential amino acid 
methionine and folate deficiency are associated 
with liver and colon cancer in animals and hu
mans.17,18 Folate deficiency impairs biosynthesis 
of the active precursor for DNA methylation, 
Sadenosylmethionine, and also impairs synthe

sis of thymidylate. A recent randomized trial also 
showed that dietary fat composition affects DNA 
methylation in adipocytes.19 Many studies have 
shown that the metabolic syndrome and related 
disorders are linked to epigenetic changes de
tected in blood DNA.20 Exposure to nicotine and 
other toxins causes substantial epigenetic chang
es in smokers, as well as in the cord blood and 
placenta of fetuses exposed prenatally, affecting 
genes involved in normal pulmonary function 
and cancer.2125 Three epigenetic loci for IgE con
centration, which is strongly linked to allergic 
response, account for 13% of variation in IgE 
levels.26 Exercise has mechanistically important 
effects on the skeletalmuscle epigenome,27 as may 
trauma in early life.28 Recently, posttraumatic 
stress disorder has been linked to epigenetic 
changes prospectively.29

C a ncer a s the Pa r a digm  
of Common Epigene tic Dise a se

It has been known since the 1980s that most or 
all tumors are associated with widespread losses 
and some gains of DNA methylation throughout 
the genome.30 The Beckwith–Wiedemann syn
drome is an overgrowth disorder that causes 
Wilms’ tumors of the kidney and other socalled 
embryonal tumors that arise from fetal cells and 
persist after birth. The frequency of tumors is 
increased by a factor of more than 1000 among 
patients with the Beckwith–Wiedemann syn
drome as compared with the general population. 
The syndrome is genetically heterogeneous, but 
the risk of cancer is associated specifically with 
loss of imprinting of the gene encoding insulin
like growth factor 2 (IGF-2), activating the nor
mally silent maternal allele and leading to a 
double dose of IGF2 protein.31,32 These observa
tions prove that the epigenetic changes precede 
and increase the risk of cancer rather than arise 
after tumor formation.33

A common description of cancer is that it is 
many different diseases34 caused by differing 
mutational mechanisms, that each cancer type is 
distinct and requires particular therapies, and 
even that each tumor of a particular type is dis
tinct and could be treated individually on the 
basis of genomic sequencing. However, the dif
ferences in tumor types are related to the tissue 
of origin and often to the spectrum of mutations 
associated with that organ, whereas the proper
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ties of tumor heterogeneity and therapeutic re
sistance are epigenetic and are shared among 
tumor types.

My colleagues and I, as well as others, have 
argued that cancers are in fact more alike than 
different and that the central feature of cancer is 
a disrupted and unstable epigenome, usually but 
not always caused by mutations and often pre
ceded by epigenetic changes to the normal tis
sues themselves as a result of age and injury.2,35,36 
These changes lead to epigenetic instability, ero
sion of defined chromatin regions, and variabil
ity of gene expression, resulting in tumorcell 
heterogeneity. Moreover, mutations specifically 
driving metastasis have not been identified in 
cancer, yet epigenetic changes in large areas of 
the genome have been shown to drive metasta
sis. Comprehensive genomescale analysis of DNA 
methylation shows that the methylation changes 
in cancer involve blocks of tens to hundreds of 
kilobases that overlap the large heterochromatin 
structures noted above, termed LOCKs and 
LADs.37,38 The transition to cancer occurs through 
regional loss of heterochromatin and loss of 
DNA methylation, with stochastic gene expres
sion in these regions (Fig. 1). Changes in DNA 
methylation in these regions lead to enhanced 
variability in DNA methylation and expression of 
genes within the regions,37 which may be the 
mechanism for tumorcell heterogeneity. Such 
heterogeneity is the defining feature of cancer 
that leads to chemoresistance, impaired DNA 
repair, metastasis, and death. A recent study has 
shown that large regions termed superenhancers 
have similar hypomethylation, leading to aber
rant gene expression.39

There have been many reviews of epigenetic 
changes in cancer, including a recent review by 
my colleagues and me.40 As discussed in much 
greater detail there, the epigenetic changes in 
cancer can be grouped into three categories: 
epigenetic modifiers, epigenetic mediators, and 
epigenetic modulators (Fig. 1). Epigenetic modi
fiers are the easiest to understand and are the 
genes whose products modify the epigenome 
directly (e.g., through three forms of epigenetic 
information: DNA methylation, posttranslational 
modification of chromatin, or higherorder chro
matin structure). Most of the genes altered by 
mutation in cancer are in fact epigenetic modi
fiers, and thus both genetic and epigenetic 
changes are channeled through the epigenome. 

Examples of chromatinremodeling genes that are 
mutated in cancer are SMARC in rhabdoid tumors, 
lung cancer, and Burkitt’s lymphoma; ARID in 
ovarian and hepatocellular cancers; IDH in glio
blastoma41; and CHD in chronic lymphocytic 
leukemia and many solid tumors. DNA methyl
transferases, TET demethylases, and the MBD 
(methylCpGbinding domain) family of methyl
ationrecognition genes are mutated in lympho
ma and colon cancer.

The epigenetic mediators in cancer, which are 
downstream of the epigenetic modifiers, are the 
targets of epigenetic modification by the modi
fiers, and this alteration contributes to a cell
state change toward stemcell–like phenotypes. 
Epigenetic mediators include IGF2 and several 
pluripotency factors such as NANOG, OCT4, and 
SOX2, which act either alone or in cooperation 
with signaling factors such as WNT in breast, 
skin, testicular, lung, colon, and esophageal 
cancers.

The epigenetic modulators, which are up
stream of the modifiers, are the factors that 
influence the activity or localization of the epi
genetic modifiers in order to destabilize differ
entiationspecific epigenetic states. They repre
sent the bridge between the environment and 
the epigenome, whose disordered function con
fers a predisposition to and acceleration of can
cer development. An example is nuclear factor κB 
(NFκB)–mediated inflammatory responses, which 
trigger an epigenetic switch to a positive feed
back loop with interleukin6 and STAT3, trans
forming mammary epithelia. STAT3, in turn, 
helps maintain the expression of OCT4, NANOG, 
and SOX2 by binding to their enhancers. Aging 
is another epigenetic modulator.2 Genomewide 
hypomethylation in blood is associated with 
breast cancer years later.42 A recent study identi
fied largescale epigenomic blocks of methyla
tion changes, similar to those seen in cancer, in 
photoaging skin.36 Cancerspecific methylation 
changes in squamouscell cancer within these 
aged skin regions occurred only in those blocks.36

The idea that cancer is fundamentally an epi
genetic disease is also reflected in the relation
ship between cancer and the epigenetic land
scape. Since the epigenetic modifiers are the 
major targets of cancer mutations, the mutations 
can have widespread effects on the stability of 
the landscape. A key concept in understanding 
this change is entropy, defined in information 
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theory as p × log p, where p is the probability of 
DNA methylation at a given site43; this use of the 
term entropy is distinct from its use in thermo
dynamics. My colleagues and I have observed 
that largescale hypomethylated blocks increase 
geneexpression variability,44 corresponding to 
these regions of high entropy.43 Moreover, “hyper
methylated CpG islands” and “hypomethylated 
shores,” the classic subcategories of DNA methyla
tion changes, are in fact both often products of 
increased entropy within these large epigenomic 
structures43,45 (Fig. 1). These same domains may 
show higher entropy than the rest of the ge
nome43 and may exist normally to allow the tis
suetype switching, such as the transition from 
epithelial to mesenchymal tissue, that is necessary 
for normal embryogenesis and wound repair.46

Driver mutations (i.e., mutations that are pres
ent in all the cells of the primary cancer and that 
are thought to cause tumor growth) are almost 
universally present in primary cancers, with some 
exceptions, such as ependymomas, which appear 
to be entirely epigenetic.47 However, driver muta
tions for metastasis have not generally been 
found, even though it is the metastases that usu
ally result in death. My colleagues and I recently 
identified largescale changes in the epigenome, 
with loss of DNA methylation and heterochro
matin including LOCKs, associated with distant 
metastases of pancreatic adenocarcinoma.48 These 
epigenetic alterations were also present in the 
particular regions of the primary tumors that 
gave rise to the metastases and thus were drivers 
of metastasis, but there were no mutated genetic 
drivers of the metastases. Moreover, this epigen
etic disruption was linked to activation of the 
oxidative pentose phosphate pathway, which, 
when inhibited experimentally, led to partial 
reversal of the epigenetic changes and abroga
tion of tumorcell growth in an in vitro model 
of invasion.48 Activation of this pathway has also 
been shown to promote the growth of other 
tumor types,49,50 and it will be interesting to look 
for the epigenetic link in these tumors as well. 
A potential mechanism could involve TET or KDM 
(lysine demethylase) dioxygenases, leading to loss 
of heterochromatin and loss of DNA methylation. 
Thus, defective metabolism may be an epigenetic 
modulator for metastasis, driving epigenomic 
changes that confer a survival advantage on cells 
that seed distant organ sites. If so, and if the 

reversibility that has been observed is confirmed, 
then one should be able to target primary tumors 
or micrometastases to abrogate or slow meta
static progression.

Epigene tic Va r i a bili t y  
a s  a  Dr i v ing Force for Dise a se

These recent findings on metastasis are consis
tent with a model in which loss of LOCKs and 
hypomethylated blocks in cancer underlies gene
expression variability within those domains and 
affects genes involved in tumor invasion and 
metastasis.45 Differentially methylated regions 
(DMRs) associated with cancer substantially cor
respond to tissuespecific DMRs.44,45 This hyper
variability would increase the adaptability of tu
mor cells in an evolutionary sense as cells with 
a growth advantage at the expense of the normal 
cells in the host. The study of pancreatic cancer 
noted above would fit this model, in that epigen
etic drivers evolving gradually within the pri
mary tumor appear to cause distant metastasis.

This epigenetic change, and in particular the 
variability of epigenetic marks, may also be a 
valuable diagnostic and prognostic tool for can
cer. For example, increased methylation variabil
ity is linked to more aggressive disease in leuke
mia and lymphoma.51,52 In addition, among biopsy 
samples that had been obtained because of a 
suspicion of cervical or breast cancer and that 
turned out to be negative, variability in DNA 
methylation was markedly increased in the sam
ples from women in whom cancer developed 
years later, as compared with the samples from 
women in whom cancer did not develop.50 This 
work linking methylation entropy to cancer pre
diction has been extended to a clinically practi
cal platform in the study of ovarian cancer.53 
Similar observations have been made for out
come prediction in hematopoietic cancers, with 
chronic lymphocytic leukemia showing high in
trasample methylation variability, which is associ
ated with transcriptional variation and a poor 
outcome.54 The importance of epigenetic vari
ability in disease risk is not limited to cancer 
and includes autoimmune disease55 and body
mass index.56 In addition, increased variability in 
DMRs has been found in monozygotic twins 
with type 1 diabetes, as compared with their 
unaffected twin siblings.57
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The Ne w Field of Epigene tic 
Epidemiol o gy

It is now well established that common genetic 
variants in the population explain only a small 
fraction of the hereditary component of disease 
risk.58 This conundrum, termed the “missing 
heritability of common disease,” is being ad
dressed by an exponentially growing effort to 
identify rare population variants that cumula
tively explain most disease risk. The use of se
quencing alone to assess disease risk is even 
more limited because sequencing studies cannot 
easily capture the role of the environment, which 
is thought to account for 80% of disease risk in 
humans. For example, a Western diet is the lead
ing cause of type 2 diabetes and a major cause 
of cancer. Smoking is the leading cause of sev
eral cancers and also contributes to autoimmune 
and respiratory disease. Inflammation is caused 
by a variety of exposures and underlies autoim
mune disease and cancer risk. Diseases related 
to aging, which constitute the foremost growing 
health problem, are in large part a result of long
term environmental damage.

A new field, epigenetic epidemiology, or the 
study of epigenetics in populations, has grown 
over the past decade to incorporate genetic 
variation with environmental exposure in explain
ing common diseases mediated by the epigenome. 
An understanding of gene–environment inter
action is central to epidemiology generally. The 
relatively new idea is that epigenetics might in 
part mediate this interaction.59,60 This idea has 
gained considerable plausibility, since we now 
know that much of genetic variation is mediated 
through the epigenome.61,62

The principal tool for epigenetic epidemiology 
is the epigenomewide association study (Fig. 2B). 
Such studies have focused almost entirely on 
DNA methylation, since this modification is 
stable over a period of decades and can be evalu
ated in genomic DNA samples from existing 
epidemiologic cohorts. In contrast, the genome
wide association study relies on the statistical 
association with a genetic variant in the popula
tion with the inherited genotype (Fig. 2A). Nor
mally, the detected variant is not in or even near 
what might be the causative gene. The epigenome
wide association study relies on the association 
between exposures and epigenetic changes, and 

their connection, in turn, with disease pheno
types. However, causality is more of a problem 
with this approach than with the genomewide 
approach, since one must determine whether the 
epigenetic changes were a cause or a conse
quence of disease, using statistical tools, animal 
models, or biochemical studies.

The integration of genetic and epigenetic 
studies can reinforce the strengths of both 
(Fig. 2C). For example, changes in DNA methyla
tion might occur at a DMR that is in turn regu
lated by genetic variants identified in genome
wide association studies. Similarly, somatic 
mutations in cancer that are caused by the envi
ronment or chance are difficult to associate with 
disease unless they are within the coding se
quence, since more than 99% of cancer muta
tions are “passenger mutations” of no mecha
nistic consequence because of the clonality of 
the disease. However, unlike mutations, epigen
etic changes in cancer are also often found in 
the normal cells near the cancer, including age
related changes that are associated with abnor
mal regulation of tumor genes (Fig. 2C).

A problem specific to epigenomewide asso
ciation studies is the role of cell type. What one 
measures in blood may not be representative of 
what occurs in a target tissue such as brain. This 
surrogate tissue problem is a subject of new 
funding initiatives such as TaRGET II, from the 
National Institute of Environmental Health Sci
ences, which is designed to compare the epigen
etic effects of toxins on target and surrogate 
tissues in mice, for eventual application to sur
rogate tissue measurements in humans. More
over, most cell populations involve multiple cell 
types that may have varying DNA methylation, 
requiring either cellular fractionation or statisti
cal correction. Several studies have identified 
epigenetic markers for schizophrenia in cord 
blood,6365 but because of the issues described 
above, their mechanistic connection to the dis
ease is still unclear.

Nevertheless, these problems can be overcome, 
and the markers can identify loci in genomewide 
association studies that are not apparent on the 
basis of purely genetic analyses. For example, in 
newly incident rheumatoid arthritis, DMRs could 
be identified at a locus not evident in conventional 
genomewide studies, in which the epigenome 
mediated genetic susceptibility to disease and 
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was replicated in additional persons.55 Another 
example is type 1 diabetes, which was shown to 
be associated with specific DMRs in discordant 
monozygotic twins; a causal role was estab
lished by examination of cord blood from new

borns in whom type 1 diabetes later developed.57

A recent study showed that many replicated 
DMRs are probably a consequence of increased 
bodymass index, but that was not true for all 
DMRs, and some were predictive of type 2 dia
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betes.66 Earlier, my colleagues and I used a 
speciescomparative epigenomic approach to the 
study of obesity and diabetes, showing that 
some dietinduced DMRs in mouse adipocytes 
could be replicated in obese humans; were par
tially reversed by bariatric surgery; were them
selves nearby known or previously unapparent 
singlenucleotide polymorphisms (SNPs), on the 
basis of genomewide association studies; and 
played a causal role in glucose uptake in vitro.67 
Recent studies have identified dietary changes in 
the microbiome that can influence host methyla
tion,68 providing another experimental tool to 
study the role of epigenetics in gene–environment 
interaction. In addition, genotype and in utero 
exposure to maternal smoking have been inte
grated in the analysis of neonates.69

Even if DNA methylation is at times a conse
quence rather than a cause of disease, there are 

data to suggest that it can serve as a presymp
tomatic marker (e.g., of Alzheimer’s disease),70,71 
and developmental changes in DNA methylation 
in the prefrontal cortex identify SNPs that are 
associated with schizophrenia.72 SNPs affecting 
DNA methylation, known as methylation quan
titative trait loci (meQTLs) (Fig. 2C), can thus be 
used for more precise genomewide association 
studies of large populations. For example, SNPs 
for a wide variety of common diseases are en
riched for meQTLs, and these methylation sites 
could identify the most likely genes involved that 
were not obvious on examination of the SNPs 
themselves.73,74 Although meQTLs are in the same 
chromosomal region as the affected differentially 
methylated positions (DMPs), the SNPs and 
DMPs need not be immediately contiguous, or 
even within the same linkage disequilibrium 
block, yet may still regulate methylation, pre
sumably because of topologic looping in the 
nucleus.75

Incor por ating Epigene tics  
in t o R isk A ssessmen t  

a nd Dise a se Pr e v en tion

We now know that epigenetic changes play a 
causal role in cancer and occur long before can
cer develops, and they appear to be the principal 
targets of genetic change and, at least in pan
creatic cancer, the principal drivers of distant 
metastasis. Yet we do not have a mechanism for 
assessing the epigenetic risk of cancer or for 
discovering agents that could be used as epigen
etic chemoprotection or epigenetic adjuvant 
therapy for primary cancer in order to abrogate 
or retard metastasis. We must bank frozen pri
mary cancers for which there are matched out
come measures (recurrence or therapy response) 
so that we can identify the epigenetic field ef
fects in normal tissue that predict progression 
and, at the same time, identify the epigenetic 
changes and genes that mediate progression.

Tamoxifen was discovered as an adjuvant 
treatment because it already had biologic activity 
against cancer. But our best chemopreventive 
agents may have no effect on tumors them
selves, and we would never know they exist. We 
must therefore also fund animal research de
signed to identify mechanistically significant 
gene–environment interactions related to expo
sure and cancer prevention.

Figure 2 (facing page). Epigenetic Approach  
to Epidemiology.

Common diseases in humans (e.g., cancer, diabetes, 
and rheumatoid arthritis) can be better understood 
through the combination of conventional genomewide 
association studies and epigenome-wide association 
studies. Conventional genomewide association studies 
(Panel A) link a hereditary DNA sequence variant or 
single-nucleotide polymorphism (SNP), through a pre-
sumed connection to a gene, to a disease phenotype 
(e.g., diabetes). Epigenome-wide association studies 
(Panel B) link environmental exposures (for which es-
tablishing causality requires statistical tools, animal 
models, or biochemical studies) and aging to a DNA 
methylation change and subsequently to a disease 
phenotype (e.g., diabetes or rheumatoid arthritis). An 
integrated approach (Panel C) incorporates both ge-
netic and environmental exposure by relating genetic 
variants to epigenetic changes (methylation quantita-
tive trait locus [meQTL]) in disease (e.g., diabetes and 
rheumatoid arthritis). Moreover, the combination of 
genomewide and epigenome-wide association studies 
can identify genetic variants regulating epigenetic marks 
(clusters of DNA methylation under genetic control 
[GeMes]) across linkage disequilibrium blocks that  
are normally penalized mathematically in conventional 
genomewide association studies (i.e., even though they 
are not in the same linkage disequilibrium block and 
thus not normally considered associated, they can be 
topologically associated through higher-order folding 
of chromatin in the nucleus, as shown in example 2). 
Similarly, cancer epigenetics (Panel D) enriches con-
ventional cancer genetics by including environmental 
exposure and epigenetic changes together with heredi-
tary genetic variants in risk assessment. DMR denotes 
differentially methylated region.
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None of our current drugscreening tools are 
designed to test whether a drug reduces the vari
ability of gene expression or associated epigen
etic marks. In contrast, we assess both the risk 
and status of disease on the basis of measure
ments of mean values (genomic or epigenomic). 
However, recent studies of epigenetic variability 
and entropy suggest that we must also measure 
celltocell variation in assessing disease risk. 
This will require collaboration among outstand
ing biologists, pharmacologists, and applied 
mathematicians to be successful.

It is important to combine genomewide and 
epigenomewide association studies in order to 
uncover mechanisms in other common diseases. 
Attractive targets include autoimmune disease, 
the treatment of which is difficult after the cyto
kine storm occurs (which is the point at which 
patients usually seek care) but might be amena
ble to epigenetic intervention in the prodromal 
stages. We already know that the genome and 
epigenome conspire to cause rheumatoid arthri
tis55 and food allergy.76 Similarly, type 2 diabetes 
is difficult to treat once organ damage has oc
curred, including insulin resistance. Yet there 
are strong data supporting a genetic–epigenetic 
connection conferring a predisposition to the dis
ease. Practical “precision epigenetic medicine” 
may already be possible. For example, metabolic 
pathological testing could use existing data 

showing that meQTLs are associated with body
mass index and metabolic phenotypes; causal 
inference testing shows that genetic variants of
ten have an effect through DNA methylation.77,78

Finally, epigenetic analysis might be used in 
completely novel ways that have received almost 
no attention to date. For example, it could be 
used to predict therapeutic response in ways that 
purely genetic analysis cannot do, because epi
genetic analysis measures the effect of the ge
nome and the patient’s existing environmental 
load. Epigenetic analysis could also be used to 
assess in utero and transgenerational effects. 
For example, we already know that epigenetic 
changes are found in the offspring of women 
who smoke during pregnancy24 and that there 
are methylation changes in the sperm of fathers 
of children with autism who have subsequent 
children with autism.79 Epigenetics can lead us at 
last to an era of comprehensive medical under
standing, unlocking the relationships among the 
patient’s genome, environment, prenatal expo
sure, and disease risk in time for us to prevent 
diseases or mitigate their effects before they 
take their toll on health.

Disclosure forms provided by the author are available with the 
full text of this article at NEJM.org.
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